算法训练第四十三天|1049. 最后一块石头的重量 II、494. 目标和、474. 一和零

发布时间:2023年12月20日

1049. 最后一块石头的重量 II:

题目链接
有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。

示例 :

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 24,得到 2,所以数组转化为 [2,7,1,8,1],
组合 78,得到 1,所以数组转化为 [2,1,1,1],
组合 21,得到 1,所以数组转化为 [1,1,1],
组合 11,得到 0,所以数组转化为 [1],这就是最优值。

解答:

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for (int i : stones) {
            sum += i;
        }
        int target = sum / 2;
        int[] dp = new int[target + 1];
        for (int i = 0; i < stones.length; i++) {
            for (int j = target; j >= stones[i]; j--) {
                dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);
            }
        }
        return sum - 2 * dp[target];
    }
}

算法总结:

最后一块石头本题根据题意我们知道要切分每块石头(石头之间是两两配对的)所以我们不难发现,如果总和的一半恰好是一堆石头的重量则为最优情况,所以本题本质上和昨天的规划问题思路类似。

494. 目标和:

题目链接
给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式 :

例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 :

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

解答:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;
        for (int i = 0; i < nums.length; i++) sum += nums[i];
        if ( target < 0 && sum < -target) return 0;
        if ((target + sum) % 2 != 0) return 0;
        int size = (target + sum) / 2;
        if(size < 0) size = -size;
        int[] dp = new int[size + 1];
        dp[0] = 1;
        for (int i = 0; i < nums.length; i++) {
            for (int j = size; j >= nums[i]; j--) {
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[size];
    }
}

算法总结:

目标和要求我们求出最终目标,所以我们可以根据最终目标,再根据总和求出正数的和,即是我们背包问题中的背包空间,本题的dp[i]表示为方法数量,那么在我们递归nums[i]的过程中dp[i]也应该是变化的,则有递推公式: dp[j] += dp[j - nums[i]];

474. 一和零:

题目链接
给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。

示例 :

输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5031 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"}{"10","1","0"}{"111001"} 不满足题意,因为它含 41 ,大于 n 的值 3

解答:

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int[][] dp = new int[m + 1][n + 1];
        int oneNum, zeroNum;
        for (String str : strs) {
            oneNum = 0;
            zeroNum = 0;
            for (char ch : str.toCharArray()) {
                if (ch == '0') {
                    zeroNum++;
                } else {
                    oneNum++;
                }
            }
            for (int i = m; i >= zeroNum; i--) {
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
}

算法总结:

本题的dp含义是i个0,j个1的集合中共有dp[i][j]个元素,那么有递推公式:dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1); dp[i - zeroNum][j - oneNum] + 1表示为放入当前元素的情况,dp[i][j]为不放入

文章来源:https://blog.csdn.net/lenwu222/article/details/135116716
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。