yun片滑块逆向

发布时间:2023年12月26日

某片滑块网址如下:

aHR0cHM6Ly93d3cueXVucGlhbi5jb20vcHJvZHVjdC9jYXB0Y2hh
网址通过base64解密后获得

这里我们以嵌入式滑块为例,大部分滑块基本都是两个接口,一个获取验证码,一个校验验证码,我们打开network,模拟抓包后锁定两个请求
在这里插入图片描述
在这里插入图片描述

我们将两个接口参数解析之后发现get请求有四个,如下
在这里插入图片描述
校验验证码则多一个token

在这里插入图片描述
我们先跟栈分析get请求
在这里插入图片描述
可以发现,整个链接参数都在这里生成,跟参发现,cb为一个随机数,i和k由加密e数据而来,e则包含了浏览器的一些指纹信息,captchaId为一个固定参数,因此,只要分析cb,i,k参数即可

接下来,跟到cb参数中,将方法扣下来就行
在这里插入图片描述
然后先查看e中部分指纹的由来,这里最方便的就是全局搜索一下fingerprint关键词
在这里插入图片描述
发现指纹也是由浏览器环境信息生成而来,这里可以扣下整个生成的方法,也可以固定,扣下来大概是这样
在这里插入图片描述
然后我们回到i和k生成的地方
在这里插入图片描述
发现i是aes加密,i的秘钥和初始化向量也是一个16位的随机数,而k是rsa加密,其中k的公钥也能找到
在这里插入图片描述
这里,我们尝试使用js来还原这两种加密,使用crypto和jsencrypt库,简单还原后如下

// aes加密函数
function encrypt(plaintext, key, iv) {
	const keyBuffer = Buffer.from(key, 'utf8');
	const ivBuffer = Buffer.from(iv, 'utf8');
	
	const cipher = crypto.createCipheriv('aes-128-cbc', keyBuffer, ivBuffer);
	let encrypted = cipher.update(plaintext, 'utf8', 'base64');
	encrypted += cipher.final('base64');
	return encrypted;
}

// rsa加密函数
function encryptRSA(N){
	let s = new jsencrypt();
	s.setPublicKey('MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDnOWe/gs033L/2/xR3oi6SLAMPBY5VledUqqH6dbCNOdrGX4xW+1x6NUfvmwpHRBA2C7xWDDvOIldTl0rMtERTDy9homrVqEcW6/TY+dSVFL3e2Yg2sVaehHv7FhmATkgfC2FcXt8Wvm99QpKRSrGKpcFYJwOj2F8hJh+rTG0IPQIDAQAB')
	const encryptedData = s.encrypt(N)
	return encryptedData
}


接着,我们组装成python代码,成功得到请求
在这里插入图片描述
get请求就分析完成了,接下来分析verify请求,继续跟栈,发现加密的请求入口是一样的,那么我们只需要找到token参数和还原加密轨迹就行

仔细观察get请求返回的餐户数,token其实在get请求中
在这里插入图片描述
然后查看堆栈参数,发现这里的e稍有不同
在这里插入图片描述
最关键的就是多了两个参数,distanceX和points,初步分析,distanceX是一个归一化向量,points是坐标轨迹,我们继续往前跟栈分析
在这里插入图片描述
找到传参位置,distanceX就是r,r的生成,就是由得到的大背景图的宽度和缺口图的宽度和偏移量进行计算的,经过多测测试,大背景图宽度不变,缺口图宽度可能有一些变化,但是大体上基本不变,所以,这里可以将这两个参数固定住

注意: 小图宽度经试验后,有时是59,有时是60,变化不大,可以固定,因为最后校验的偏移值,实际上在后端校验中,都会有几个像素的浮动值,因为不能保证每次都能移到缺口正中间位置

	this.imgWidth = 304;
	this.alertImgTagwidth = 59;
    distanceX= (this.imgWidth - this.alertImgTagwidth) * (this.offsetX / (this.imgWidth - 42)) / 304;

接下来滑块轨迹,可以继续跟栈,去扣生成的代码,也可以自己模拟生成,这里经过多次断点分析后,发现第一个参数是x的移动距离,第二个参数是y的移动距离,而第三个参数是时间戳的变化,所以,大致模拟过程如下

	function reducePoints(offsetX){
		points = [[800 , 1979, 5]]
		var min = 10;
		var max = 30;
		for ( var i = 1; i<21;i ++){
			x = 800 + (offsetX / 20) * i
			randomInt = Math.floor(Math.random() * (41)) + min;
			point = [x , points[i - 1][1] + 1, points[i - 1][2] + randomInt]
			points.push(point)
		}
		return points
	}

这里初始x,y,时间戳都可以固定,我这里循环了20次,最后一共生成21个点

注意:经本人实验后,生成的轨迹点数太少不会通过,具体多少个没有实验,生成21个基本上没有问题

最后将代码拼凑整合一下,如下
在这里插入图片描述
然后,使用python请求发包,这里需要注意个点,从get请求拿到的大图,和网页中的图像大小是不一致的,所以轨迹需要做一个计算,轨迹的计算很简单,偏移量 / 大图宽度 * 网页图宽度 即可
在这里插入图片描述

最后成功
在这里插入图片描述

文章来源:https://blog.csdn.net/qq_36551453/article/details/135230857
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。