【提示学习论文六】MaPLe: Multi-modal Prompt Learning论文原理

发布时间:2024年01月11日

MaPLe: Multi-modal Prompt Learning 多模式提示学习

文章介绍

  • 这篇文章于2023年发表在CVPR(Conference on Computer Vision and Pattern Recognition),作者是Muhammad Uzair Khattak,Hanoona Rasheed,Muhammad Maaz,Salman Khan,Fahad Shahbaz Khan。
  • 研究发现Clip的问题:在单个分支(语言或视觉)中使用prompt来调整表示是次优的,它不能在下游任务上灵活地动态调整两个表示空间。
  • 作者提出了针对视觉和语言分支的多模态提示学习(MaPLe),以改善视觉和语言表征之间的一致性。
  • 与CoCoOp方法相比更好。

动机

在这里插入图片描述

作者认为,Clip中只有文本编码器学习prompt,不足以对图像编码器所需的适应进行建模,因此着手基于多模态提示学习(MaPLe)来充分微调文本和图像编码器表示。

MaPLe:Multi-modal Prompt Learning 模型结构

在这里插入图片描述

  • 这是第一个用于微调CLIP的多模式提示方法。
  • 多模态提示是在视觉和语言分支的多个转换块中学习的,以逐步学习两种模态的协同行为。
  • 提出了耦合函数,将文本和图像编码器中的提示学习联系起来,作为两种模式之间的桥梁,允许梯度的相互传播,以促进协同作用。
  • 在视觉和语言分支的前 J J J 层( J J J < K K K )引入 learnable token。
text encoder文本编码器image encoder图像编码器
W i W_i Wi?word embeddings E i E_i Ei?image embeddings
L i L_i Li?某层transformer V i V_i Vi?某层transformer
P i P_i Pi?提示 P i P_i Pi?提示
c i c_i ci?class(CLS) tokens

1、Deep Language Prompting 深度语言提示

  • 作者在 text encoder 的 J J J 层各引入了 b b b 个learnable tokens : { P i ∈ R d l {P_i \in \mathbb{R}}^{d_{l}} Pi?Rdl?} i = 1 b _{i=1}^b i=1b?

  • 输入: [ P 1 , P 2 , … , P b , W 0 ] [P_1, P_2, \ldots , P_b, W_0] [P1?,P2?,,Pb?,W0?]

  • J J J:提示tokens被引入到每一层 L i L_i Li?,与 W i W_i Wi? 进行连接,这里的 [ ? , ? ] [ \cdot, \cdot] [?,?] 是指连接操作。(包括第 J J J 层)

[ ? , W i ] = L i ( [ P i ? 1 , W i ? 1 ] ) ? i = 1 , 2 , … , J (1) \left[ -, W_i \right] = L_i \left( \left[P_{i-1}, W_{i-1}\right] \right) \text { } i = 1, 2, \ldots, J \quad \tag{1} [?,Wi?]=Li?([Pi?1?,Wi?1?])?i=1,2,,J(1)

  • J J J没有额外的提示输入,而是处理前一层的prompt,通过自注意力机制和前馈神经网络来处理文本数据,计算最后的文本表示 z z z

[ P j , W j ] = L j ( [ P j ? 1 , W j ? 1 ] ) ? j = J + 1 , … , K (2) [P_j, W_j] = L_j \left( \left[P_{j-1}, W_{j-1}\right] \right) \text { } j = J + 1, \ldots, K \quad \tag{2} [Pj?,Wj?]=Lj?([Pj?1?,Wj?1?])?j=J+1,,K(2)
z = TextProj ( w N K ) (3) z = \text{TextProj} \left(w_{N_K}\right) \quad \tag{3} z=TextProj(wNK??)(3)

  • J = 1 J = 1 J=1提示 P P P 只应用于第一个Transformer层的输入,此时深度语言提示技术退化为CoOp

2、Deep Vision Prompting 深度视觉提示

  • 类似于深度语言提示,在 text encoder 的 J J J 层各引入了 b b b 个learnable tokens : { P i ~ ∈ R d v {\tilde{P_i} \in \mathbb{R}}^{d_{v}} Pi?~?Rdv?} i = 1 b _{i=1}^b i=1b?
  • J J J
    [ c i , E i ] = V i ( [ c i ? 1 , E i ? 1 , P ~ i ? 1 ] ) ? i = 1 , 2 , … , J [c_i, E_i] = V_i([c_{i-1}, E_{i-1}, \tilde{P}_{i-1}]) \quad \text { } i = 1, 2, \ldots, J [ci?,Ei?]=Vi?([ci?1?,Ei?1?,P~i?1?])?i=1,2,,J
  • J J J
    [ c j , E j , P ~ j ] = V j ( [ c j ? 1 , E j ? 1 , P ~ j ? 1 ] ) ? j = J + 1 , … , K [c_j, E_j, \tilde{P}_j] = V_j([c_{j-1}, E_{j-1}, \tilde{P}_{j-1}]) \quad \text{ } j = J + 1, \ldots, K [cj?,Ej?,P~j?]=Vj?([cj?1?,Ej?1?,P~j?1?])?j=J+1,,K
    x = ImageProj ( c K ) x = \text{ImageProj}(c_K) x=ImageProj(cK?)

3、Vision Language Prompt Coupling 视觉语言提示耦合

共享提示在两种模态之间建立联系,语言提示被引入到语言分支中的J层Transformer块中,而视觉提示通过视觉到语言的投影函数从语言提示中获得

在这里插入图片描述

  • independent V-L Prompting:独立V-L提示
  • 通过投影函数 F ( ? ) F(\cdot) F(?)将语言提示 P i P_i Pi? 映射到视觉提示 P i ~ \tilde{P_i} Pi?~?
  • F i F_i Fi?是一个线性层,这个映射操作是一个从 d l dl dl 维到 d v dv dv 维的线性变换

提示耦合过程

  • 提示过程使用投影函数 F ( ? ) F(\cdot) F(?) 在前 J J J 个transformer块中进行
  • 语言分支:通过 F i F_i Fi? P i P_i Pi? 进行映射,得到了 P i ~ \tilde{P_i} Pi?~?
  • 视觉分支:通过引入了调整后的视觉提示 P i ~ \tilde{P_i} Pi?~?,保持了分支之间的协同作用。

实验

1、通过V-L prompts prompting CLIP

在这里插入图片描述

  • shallow MaPLe(第1行)在泛化方面提供了对CoOp和Co-CoOp的持续改进。
  • 深度语言提示(第3行)比深度视觉提示(第2行)有所改善,表明在语言分支学习的提示能更好地适应CLIP。
  • 虽然单独结合上述两种方法(第4行)进一步提高了性能,但它很难从语言和视觉分支中获得综合效益。
  • MaPLe与深度提示(第4行)结合了提示在两个分支中的好处,通过在语言提示上执行视觉提示的显式条件反射来强制交互。它提供了新类和基类准确度的改进,导致最佳HM为78.55%。

2、基类到新类的泛化

在这里插入图片描述

  • 给出了MaPLe在11个识别数据集上从基类到新类的泛化设置下的性能。
  • 与最先进的Co-CoOp相比,MaPLe在所有11个数据集上的基本类和新类性能都有所提高,只有Caltech101的基本类性能略有下降。
  • 与CLIP相比,Co-CoOp仅在4/11数据集上有所提高,平均新分类准确率从74.22%降至71.69%。
  • MaPLe是一个强大的竞争对手,它在6/11数据集上的新类别上提高了CLIP的准确性,平均增益从74.22%提高到75.14%。

3、跨数据集评估

在这里插入图片描述

我们通过在所有1000个ImageNet类上学习多模态提示,然后直接将其转移到剩余的10个数据集上,来测试MaPLe的跨数据集泛化能力。MaPLe表现出有竞争力的性能,平均准确率最高,为66.30%。

4、域泛化

在这里插入图片描述
评估了ImageNet训练模型对各种域外数据集的直接可移植性,并观察到,与表5所示的所有现有方法相比,它持续提升。

5、消融实验

在这里插入图片描述

  • Prompt Depth(左):深度J对语言和视觉分支深度的影响
    MaPLe在深度为 9 时实现了最大性能
  • Prompt Length(右):提示符长度对MaPLe的影响
    随着提示符长度的增加,基类上的性能一般保持不变,而新类的准确率则下降。这表明过拟合本质上损害了对新类别的泛化。
    在这里插入图片描述
  • Effectiveness of Multi-modal Prompting:多模式提示的有效性

在这里插入图片描述

  • Prompting complexity:提示复杂度
    MaPLe提供了更好的推理和训练速度,MaPLe?的参数比MaPLe小约9倍,MaPLe?对所有层prompt使用统一的V-L耦合函数,比MaPLe少约9倍的参数,但性能差异不大。

总结

大规模V-L模型(例如CLIP)对下游任务的适应是一个具有挑战性的问题,因为大量的可调参数和有限的下游数据集大小。提示学习是一种高效且可扩展的技术,可以根据新的下游任务定制V-L模型。为此,目前的提示学习方法要么只考虑视觉方面的提示,要么只考虑语言方面的提示。我们的工作表明,对视觉和语言分支进行提示是至关重要的,以使V-L模型适当地适应下游任务。此外,我们提出了一种策略,通过在不同的transformer阶段将视觉提示明确地限制在文本提示上,来确保视觉语言模式之间的协同作用。我们的方法提高了对新类别、跨数据集迁移和具有域迁移的数据集的泛化能力。

文章来源:https://blog.csdn.net/weixin_51293984/article/details/135461308
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。