进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进程,而 main 函数所在的线程就是这个进程中的一个线程,也称主线程。如下图所示,在 Windows 中通过查看任务管理器的方式,我们就可以清楚看到 Windows 当前运行的进程。
线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的堆和方法区资源,但每个线程有自己的程序计数器、虚拟机栈和本地方法栈
,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。
Java 程序天生就是多线程程序,我们可以通过 JMX 来看看一个普通的 Java 程序有哪些线程,代码如下
public class MultiThread {
public static void main(String[] args) {
// 获取 Java 线程管理 MXBean
ThreadMXBean threadMXBean = ManagementFactory.getThreadMXBean();
// 不需要获取同步的 monitor 和 synchronizer 信息,仅获取线程和线程堆栈信息
ThreadInfo[] threadInfos = threadMXBean.dumpAllThreads(false, false);
// 遍历线程信息,仅打印线程 ID 和线程名称信息
for (ThreadInfo threadInfo : threadInfos) {
System.out.println("[" + threadInfo.getThreadId() + "] " + threadInfo.getThreadName());
}
}
}
[5] Attach Listener //添加事件
[4] Signal Dispatcher // 分发处理给 JVM 信号的线程
[3] Finalizer //调用对象 finalize 方法的线程
[2] Reference Handler //清除 reference 线程
[1] main //main 线程,程序入口
一个进程中可以有多个线程,多个线程共享进程的堆和方法区 (JDK1.8 之后的元空间)资源,但是每个线程有自己的程序计数器、虚拟机栈 和 本地方法栈。
总结:线程是进程划分成的更小的运行单位。线程和进程最大的不同在于基本上各进程是独立的,而各线程则不一定,因为同一进程中的线程极有可能会相互影响
。线程执行开销小,但不利于资源的管理和保护;而进程正相反。
程序计数器私有主要是为了线程切换后能恢复到正确的执行位置。
虚拟机栈: 每个 Java 方法在执行之前会创建一个栈帧用于存储局部变量表、操作数栈、常量池引用等信息。从方法调用直至执行完成的过程,就对应着一个栈帧在 Java 虚拟机栈中入栈和出栈的过程。本地方法栈: 和虚拟机栈所发挥的作用非常相似,区别是:虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。所以,为了保证线程中的局部变量不被别的线程访问到,虚拟机栈和本地方法栈是线程私有的
堆和方法区是所有线程共享的资源,其中堆是进程中最大的一块内存,主要用于存放新创建的对象 (几乎所有对象都在这里分配内存),方法区主要用于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
单核 CPU 同时运行多个线程的效率是否会高,取决于线程的类型和任务的性质。一般来说,有两种类型的线程:CPU 密集型和 IO 密集型。CPU 密集型的线程主要进行计算和逻辑处理,需要占用大量的 CPU 资源。IO 密集型的线程主要进行输入输出操作,如读写文件、网络通信等,需要等待 IO 设备的响应,而不占用太多的 CPU 资源。在单核 CPU 上,同一时刻只能有一个线程在运行,其他线程需要等待 CPU 的时间片分配。如果线程是 CPU 密集型的,那么多个线程同时运行会导致频繁的线程切换,增加了系统的开销,降低了效率。如果线程是 IO 密集型的,那么多个线程同时运行可以利用 CPU 在等待 IO 时的空闲时间,提高了效率。
因此,对于单核 CPU 来说,如果任务是 CPU 密集型的,那么开很多线程会影响效率;如果任务是 IO 密集型的,那么开很多线程会提高效率。当然,这里的“很多”也要适度,不能超过系统能够承受的上限。
Java 线程在运行的生命周期中的指定时刻只可能处于下面 6 种不同状态的其中一个状态:
NEW: 初始状态,线程被创建出来但没有被调用 start() 。
RUNNABLE: 运行状态,线程被调用了 start()等待运行的状态。
BLOCKED:阻塞状态,需要等待锁释放。
WAITING:等待状态,表示该线程需要等待其他线程做出一些特定动作(通知或中断)。
TIME_WAITING:超时等待状态,可以在指定的时间后自行返回而不是像 WAITING 那样一直等待。
TERMINATED:终止状态,表示该线程已经运行完毕。
当线程执行 wait()方法之后,线程进入 WAITING(等待) 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态。
TIMED_WAITING(超时等待) 状态相当于在等待状态的基础上增加了超时限制,比如通过 sleep(long millis)方法或 wait(long millis)方法可以将线程置于 TIMED_WAITING 状态。当超时时间结束后,线程将会返回到 RUNNABLE 状态。
当线程进入 synchronized 方法/块或者调用 wait 后(被 notify)重新进入 synchronized 方法/块,但是锁被其它线程占有,这个时候线程就会进入 BLOCKED(阻塞) 状态。
线程在执行完了 run()方法之后将会进入到 TERMINATED(终止) 状态。
线程在执行过程中会有自己的运行条件和状态(也称上下文),比如上文所说到过的程序计数器,栈信息等。当出现如下情况的时候,线程会从占用 CPU 状态中退出。主动让出 CPU,比如调用了 sleep(), wait() 等。时间片用完,因为操作系统要防止一个线程或者进程长时间占用 CPU 导致其他线程或者进程饿死。调用了阻塞类型的系统中断,比如请求 IO,线程被阻塞。被终止或结束运行这其中前三种都会发生线程切换,线程切换意味着需要保存当前线程的上下文,留待线程下次占用 CPU 的时候恢复现场。并加载下一个将要占用 CPU 的线程上下文。这就是所谓的 上下文切换。上下文切换是现代操作系统的基本功能,因其每次需要保存信息恢复信息,这将会占用 CPU,内存等系统资源进行处理,也就意味着效率会有一定损耗,如果频繁切换就会造成整体效率低下。
认识线程死锁线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。如下图所示,线程 A 持有资源 2,线程 B 持有资源 1,他们同时都想申请对方的资源,所以这两个线程就会互相等待而进入死锁状态。
public class DeadLockDemo {
private static Object resource1 = new Object();//资源 1
private static Object resource2 = new Object();//资源 2
public static void main(String[] args) {
new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
}
}
}, "线程 1").start();
new Thread(() -> {
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource1");
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
}
}
}, "线程 2").start();
}
}
Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1
线程 A 通过 synchronized (resource1) 获得 resource1 的监视器锁,然后通过Thread.sleep(1000);让线程 A 休眠 1s 为的是让线程 B 得到执行然后获取到 resource2 的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁
。
上面的例子符合产生死锁的四个必要条件:
互斥条件
:该资源任意一个时刻只由一个线程占用。
请求与保持条件
:一个线程因请求资源而阻塞时,对已获得的资源保持不放。
不剥夺条件:
线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
循环等待条件
:若干线程之间形成一种头尾相接的循环等待资源关系。
如何预防死锁? 破坏死锁的产生的必要条件即可:
我们对线程 2 的代码修改成下面这样就不会产生死锁了。
new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
}
}
}, "线程 2").start();
输出:
Thread[线程 1,5,main]get resource1
Thread[线程 1,5,main]waiting get resource2
Thread[线程 1,5,main]get resource2
Thread[线程 2,5,main]get resource1
Thread[线程 2,5,main]waiting get resource2
Thread[线程 2,5,main]get resource2
Process finished with exit code 0
相同:两者都可以暂停线程的执行。
区别:sleep() 方法没有释放锁,而 wait() 方法释放了锁 。wait() 通常被用于线程间交互/通信,sleep()通常被用于暂停执行。
wait() 方法被调用后,线程不会自动苏醒
,需要别的线程调用同一个对象上的 notify()或者 notifyAll() 方法。sleep()方法执行完成后,线程会自动苏醒
,或者也可以使用 wait(long timeout) 超时后线程会自动苏醒。
sleep() 是 Thread 类的静态本地方法,wait() 则是 Object 类的本地方法。为什么这样设计呢?下一个问题就会聊到。
wait() 是让获得对象锁的线程实现等待,会自动释放当前线程占有的对象锁。每个对象(Object)都拥有对象锁,既然要释放当前线程占有的对象锁并让其进入 WAITING 状态,自然是要操作对应的对象(Object)而非当前的线程(Thread)。类似的问题:为什么 sleep() 方法定义在 Thread 中?因为 sleep() 是让当前线程暂停执行,不涉及到对象类,也不需要获得对象锁。
这是另一个非常经典的 Java 多线程面试问题,而且在面试中会经常被问到。很简单,但是很多人都会答不上来!new 一个 Thread,线程进入了新建状态。调用 start()方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start() 会执行线程的相应准备工作,然后自动执行 run() 方法的内容,这是真正的多线程工作。 但是,直接执行 run() 方法,会把 run() 方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。
总结:调用 start() 方法方可启动线程并使线程进入就绪状态,直接执行 run() 方法的话不会以多线程的方式执行。
JMM(Java 内存模型)主要定义了对于一个共享变量,当另一个线程对这个共享变量执行写操作后,这个线程对这个共享变量的可见性。
要想理解透彻 JMM(Java 内存模型),我们先要从 CPU 缓存模型和指令重排序
说起!
为什么要弄一个 CPU 高速缓存呢? 类比我们开发网站后台系统使用的缓存(比如 Redis)是为了解决程序处理速度和访问常规关系型数据库速度不对等的问题。
CPU 缓存则是为了解决 CPU 处理速度和内存处理速度不对等的问题。我们甚至可以把 内存看作外存的高速缓存,程序运行的时候我们把外存的数据复制到内存,由于内存的处理速度远远高于外存,这样提高了处理速度
。总结:CPU Cache 缓存的是内存数据用于解决 CPU 处理速度和内存不匹配的问题,内存缓存的是硬盘数据用于解决硬盘访问速度过慢的问题。