RT-Thread: eeprom存储芯片 at24cxx软件包使用流程

发布时间:2024年01月15日

说明:介绍 i2c 通讯接口的?eeprom at24cxx 读写测、试代码,代码基于 at24cxx 软件包实现。

使用步骤:

* 1:在 RT-Thread Settings 中开启 【软件模拟I2C】

* 2:在 RT-Thread Settings 软件包中搜索 at24cxx 添加软件包,并保存。

* 3:drivers-> board.h 中打开I2C接口的定义 搜索 I2C CONFIG BEGIN,按介绍定义。

* 4:packages 目录中可以找到添加的软件包,at24cxx.h 中定义 eeprom的型号 ,如 #define EE_TYPE AT24C64

* 软件包提示: 注意事项

* 请在at24cxx.h中修改EE_TYPE为自己使用的型号(默认为AT25C512) 。

* 请在at24cxx.h中修改EE_TWR为自己使用EEPROM的Write Cycle Time,具体值请查看芯片datasheet(默认为5ms) 。

* 从设备地址为7位地址 0x50, 而不是 0xA0 。

1:在 RT-Thread Settings 中开启 【软件模拟I2C】

2:在 RT-Thread Settings 软件包中搜索 at24cxx 添加软件包,添加后并保存。

3:drivers-> board.h 中打开I2C接口的定义 搜索 I2C CONFIG BEGIN,按介绍定义。

4:packages 目录中可以找到添加的软件包,at24cxx.h 中定义 eeprom的型号 ,如 #define EE_TYPE AT24C64

4.1.设置 EEPROM芯片型号,写周期,地址

at24cxx.h 头文件中设置芯片型号,修改写周期(根据芯片手册)

4.2.型号设置好后先编译,编译后对应的 c文件中的相应配置就会打开。

4.3. 芯片地址设置(EEPROM地址一般是 0x50 不含读写标志位及3个IO设置的地址, A0 = A1 = A2 =L 接 GND时地址为0x50;A0 = H, A1 = L, A2 = L 地址为0x51)

5. 测试代码

/*
 * Copyright (c) 2006-2020, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 说明:本eeprom 读写测试代码基于 at24cxx 软件包
 * 使用步骤:
 * 1:在 RT-Thread Settings 中开启  【软件模拟I2C】
 * 2:在 RT-Thread Settings 软件包中搜索 at24cxx 添加软件包,并保存。
 * 3:drivers-> board.h 中打开I2C接口的定义  搜索 I2C CONFIG BEGIN,按介绍定义。
 * 4:packages 目录中可以找到添加的软件包,at24cxx.h 中定义 eeprom的型号 ,如 #define EE_TYPE     AT24C64
 *
 * 软件包提示: 注意事项
 * 请在at24cxx.h中修改EE_TYPE为自己使用的型号(默认为AT25C512) 。
 * 请在at24cxx.h中修改EE_TWR为自己使用EEPROM的Write Cycle Time,具体值请查看芯片datasheet(默认为5ms) 。
 * 从设备地址为7位地址 0x50, 而不是 0xA0 。
 */
#include "user_cfg.h"

#define EEPROM_I2C  "i2c1"   /* eeprom 所挂载的i2c总线 */
#define EEP_ADDR     0       /* 从设备芯片地址,IC的A2,A1,A0设置的值 */
#define CF_START_ADD 0       /* eeprom 校准系数的首地址 */

//#define EEPROM_TEST_CODE

static at24cxx_device_t eeprom_dev;  /*    at24cxx 设备对象 */

/* eeprom 设备初始化 */
void eeprom_init(void)
{
    eeprom_dev = at24cxx_init(EEPROM_I2C,EEP_ADDR);
    if(eeprom_dev == RT_NULL)
    {
        rt_kprintf(">eeprom 注册失败... \n");
    }
}

/* 校准系数保存到 eeprom  */
void eeprom_cf_save(void)
{
    int8_t temp[CH_NUM*2];

    for (int8_t var = 0; var < CH_NUM; ++var)
    {
        temp[var*2] = Adc_Channel_CF_Data[var]>>8;
        temp[var*2+1] = Adc_Channel_CF_Data[var];
    }

    at24cxx_write(eeprom_dev,CF_START_ADD,(uint8_t *)temp,CH_NUM*2); /*向eeprom 中写入数据*/
    rt_kprintf(">校准值已保存到 eeprom ... \n");
}

void eeprom_rw_entry(void *param)
{

   rt_kprintf(">eeprom 线程启动... \n");
   eeprom_init();
   rt_kprintf(">eeprom 初始化完成... \n");

#ifdef  EEPROM_TEST_CODE
   /* 数据读写测试 */
   uint8_t eeprom_RBuffer[254];
   uint8_t eeprom_WBuffer[254];

   for (uint8_t var = 0; var < 254; ++var)
   {
       eeprom_WBuffer[var] = var ;
   }


   at24cxx_write(eeprom_dev,0,eeprom_WBuffer,254); /*向eeprom 中写入数据*/
   rt_kprintf("eeprom 数据写入 完成... \n");
   rt_thread_mdelay(100);

   at24cxx_read(eeprom_dev,0,eeprom_RBuffer,254);  /*从eeprom 中读数据*/
   rt_kprintf("eeprom 数据读出 完成... \n");
   for (uint8_t var = 0; var < 254; ++var)
   {
       rt_kprintf("ADD = %d ,Data = %d \n",var,eeprom_RBuffer[var]);
   }
   /* 以上 数据读写测试 */
#endif

   uint8_t eeprom_RBuffer[CH_NUM*2];
   at24cxx_read(eeprom_dev,CF_START_ADD,eeprom_RBuffer,CH_NUM*2);  /*从eeprom 中读数据放入内存*/

   for (uint8_t var = 0; var < CH_NUM; ++var)  /* eeprom 中的校准数据转换成16bit后给校准值变量,eeprom中存储方式为高位在前,低位在后。*/
   {
       Adc_Channel_CF_Data[var] = eeprom_RBuffer[2*var];
       Adc_Channel_CF_Data[var] = (Adc_Channel_CF_Data[var]<<8)|eeprom_RBuffer[2*var+1];
       rt_kprintf("校准值:%011s ,Data = %05d \n",Adc_Channel_Name[var],Adc_Channel_CF_Data[var]);
   }


   while(1)
   {
       rt_thread_mdelay(100);

   }

}



void eeprom_test(void)
{
    rt_thread_t tid1;//创建线程控制块指针来接收线程创建函数的返回值,目的是通过返回值判断线程是否创建ok

    /* 创建线程 1,名称是 pt_io_test_entry,入口是 pt_io_test_entry*/
        tid1 = rt_thread_create("eeprom_rw_entry",
                                eeprom_rw_entry, RT_NULL,
                                1700,//设置内存堆栈大小
                                10, 50);//设置优先级,时间片参数,时间片是在有多个相同优先级线程时,这个线程每次被执行多少个时间片

        /* 如果获得线程控制块,启动这个线程 */
        if (tid1 != RT_NULL)
            rt_thread_startup(tid1);
}

INIT_APP_EXPORT(eeprom_test);

6. 项目使用中对软件包函数的一些描述

at24cxx.c

/*
 * Copyright (c) 2006-2018, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2019-04-13     XiaojieFan   the first version
 * 2019-12-04     RenMing      ADD PAGE WRITE and input address can be selected 
 */
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>

#include <string.h>
#include <stdlib.h>

#define DBG_ENABLE
#define DBG_SECTION_NAME "at24xx"
#define DBG_LEVEL DBG_LOG
#define DBG_COLOR
#include <rtdbg.h>

#include "at24cxx.h"

#ifdef PKG_USING_AT24CXX
#define AT24CXX_ADDR (0xA0 >> 1)                      //A0 = A1 = A2 =L, connect GND
//#define AT24CXX_ADDR (0x51)                             //A0 = H, A1 = L, A2 = L

#if (EE_TYPE == AT24C01)
    #define AT24CXX_PAGE_BYTE               8
    #define AT24CXX_MAX_MEM_ADDRESS         128
#elif (EE_TYPE == AT24C02)
    #define AT24CXX_PAGE_BYTE               8
    #define AT24CXX_MAX_MEM_ADDRESS         256
#elif (EE_TYPE == AT24C04)
    #define AT24CXX_PAGE_BYTE               16
    #define AT24CXX_MAX_MEM_ADDRESS         512
#elif (EE_TYPE == AT24C08)
    #define AT24CXX_PAGE_BYTE               16
    #define AT24CXX_MAX_MEM_ADDRESS         1024
#elif (EE_TYPE == AT24C16)
    #define AT24CXX_PAGE_BYTE               16
    #define AT24CXX_MAX_MEM_ADDRESS         2048
#elif (EE_TYPE == AT24C32)
    #define AT24CXX_PAGE_BYTE               32
    #define AT24CXX_MAX_MEM_ADDRESS         4096
#elif (EE_TYPE == AT24C64)
    #define AT24CXX_PAGE_BYTE               32
    #define AT24CXX_MAX_MEM_ADDRESS         8192
#elif (EE_TYPE == AT24C128)
    #define AT24CXX_PAGE_BYTE               64
    #define AT24CXX_MAX_MEM_ADDRESS         16384
#elif (EE_TYPE == AT24C256)
    #define AT24CXX_PAGE_BYTE               64
    #define AT24CXX_MAX_MEM_ADDRESS         32768
#elif (EE_TYPE == AT24C512)
    #define AT24CXX_PAGE_BYTE               128
    #define AT24CXX_MAX_MEM_ADDRESS         65536
#endif

static rt_err_t read_regs(at24cxx_device_t dev, rt_uint8_t len, rt_uint8_t *buf)
{
    struct rt_i2c_msg msgs;

    msgs.addr = AT24CXX_ADDR | dev->AddrInput;
    msgs.flags = RT_I2C_RD;
    msgs.buf = buf;
    msgs.len = len;

    if (rt_i2c_transfer(dev->i2c, &msgs, 1) == 1)
    {
        return RT_EOK;
    }
    else
    {
        return -RT_ERROR;
    }
}

/**读取 eeprom 一个字节函数 (YL已验证测试)

 * @param dev ,at24cxx 设备对象
 * @param readAddr;读取地址
 * @return temp;返回读取到的数据
 */

uint8_t at24cxx_read_one_byte(at24cxx_device_t dev, uint16_t readAddr)
{
    rt_uint8_t buf[2];
    rt_uint8_t temp = 0;
#if (EE_TYPE > AT24C16)
    buf[0] = (uint8_t)(readAddr>>8);
    buf[1] = (uint8_t)readAddr;
    if (rt_i2c_master_send(dev->i2c, AT24CXX_ADDR, 0, buf, 2) == 0) 
#else
    buf[0] = readAddr;
    if (rt_i2c_master_send(dev->i2c, AT24CXX_ADDR | dev->AddrInput, 0, buf, 1) == 0)
#endif        
    {
        return RT_ERROR;
    }
    read_regs(dev, 1, &temp);
    return temp;
}

/**写一个字节  eeprom 函数 (YL已验证测试)

 * @param dev ,at24cxx 设备对象
 * @param readAddr;写地址
 * @param dataToWrite;待写入数据
 * @return 写成功,写失败
 */


rt_err_t at24cxx_write_one_byte(at24cxx_device_t dev, uint16_t writeAddr, uint8_t dataToWrite)
{
    rt_uint8_t buf[3];
#if (EE_TYPE > AT24C16)
    buf[0] = (uint8_t)(writeAddr>>8);
    buf[1] = (uint8_t)writeAddr;
    buf[2] = dataToWrite;
    if (rt_i2c_master_send(dev->i2c, AT24CXX_ADDR, 0, buf, 3) == 3)    
#else    
    buf[0] = writeAddr; //cmd
    buf[1] = dataToWrite;
    //buf[2] = data[1];
    

    if (rt_i2c_master_send(dev->i2c, AT24CXX_ADDR | dev->AddrInput, 0, buf, 2) == 2)
#endif        
        return RT_EOK;
    else
        return -RT_ERROR;

}

rt_err_t at24cxx_read_page(at24cxx_device_t dev, uint32_t readAddr, uint8_t *pBuffer, uint16_t numToRead)
{
    struct rt_i2c_msg msgs[2];
    uint8_t AddrBuf[2];
    
    msgs[0].addr = AT24CXX_ADDR | dev->AddrInput;
    msgs[0].flags = RT_I2C_WR ;
 
#if (EE_TYPE > AT24C16)
    AddrBuf[0] = readAddr >> 8;
    AddrBuf[1] = readAddr;
    msgs[0].buf = AddrBuf;
    msgs[0].len = 2; 
#else
    AddrBuf[0] = readAddr;
    msgs[0].buf = AddrBuf;
    msgs[0].len = 1;
#endif    
    
    msgs[1].addr = AT24CXX_ADDR | dev->AddrInput;
    msgs[1].flags = RT_I2C_RD;
    msgs[1].buf = pBuffer;
    msgs[1].len = numToRead;
    
    if(rt_i2c_transfer(dev->i2c, msgs, 2) == 0) 
    {
        return RT_ERROR;
    }

    return RT_EOK;
}

/**写一页  eeprom 函数

 * @param dev ,at24cxx 设备对象
 * @param readAddr;写地址
 * @param *pBuffer;
 * @param numToWrite;
 * @return 写成功,写失败
 */

rt_err_t at24cxx_write_page(at24cxx_device_t dev, uint32_t wirteAddr, uint8_t *pBuffer, uint16_t numToWrite)
{
    struct rt_i2c_msg msgs[2];
    uint8_t AddrBuf[2];

    msgs[0].addr = AT24CXX_ADDR | dev->AddrInput;
    msgs[0].flags = RT_I2C_WR ;
    
#if (EE_TYPE > AT24C16)
    AddrBuf[0] = wirteAddr >> 8;
    AddrBuf[1] = wirteAddr;
    msgs[0].buf = AddrBuf;
    msgs[0].len = 2; 
#else
    AddrBuf[0] = wirteAddr;
    msgs[0].buf = AddrBuf;
    msgs[0].len = 1;
#endif    

    msgs[1].addr = AT24CXX_ADDR | dev->AddrInput;
    msgs[1].flags = RT_I2C_WR | RT_I2C_NO_START;
    msgs[1].buf = pBuffer;
    msgs[1].len = numToWrite;

    if(rt_i2c_transfer(dev->i2c, msgs, 2) == 0) 
    {
        return RT_ERROR;
    }

    return RT_EOK;
}
/**查看是否存在eeprom 设备,通过在最后一个字节写入标志位,进行判断

 * @param dev ,at24cxx 设备对象
 * @return =RT_EOK  设备存在, != RT_EOK  设备不存在
 */

rt_err_t at24cxx_check(at24cxx_device_t dev)
{
    uint8_t temp;
    RT_ASSERT(dev);

    temp = at24cxx_read_one_byte(dev, AT24CXX_MAX_MEM_ADDRESS - 1);
    if (temp == 0x55) return RT_EOK;
    else
    {
        at24cxx_write_one_byte(dev, AT24CXX_MAX_MEM_ADDRESS - 1, 0x55);
        rt_thread_mdelay(EE_TWR);                 // wait 5ms befor next operation
        temp = at24cxx_read_one_byte(dev, AT24CXX_MAX_MEM_ADDRESS - 1);
        if (temp == 0x55) return RT_EOK;
    }
    return RT_ERROR;
}

/**连续读取
 * This function read the specific numbers of data to the specific position;读取 eeprom ,在AT24CXX里面的指定地址开始读出指定个数的数据
 *
 * @param bus the name of at24cxx device ;                   dev:总线at24cxx设备的名称
 * @param ReadAddr the start position to read;                   ReadAddr:读取的起始位置
 * @param pBuffer  the read data store position;         pBuffer:读取数据存储位置
 * @param NumToRead;                                                                     NumToRead:读取数量
 * @return RT_EOK  write ok.  != RT_EOK 读取成功,RT_EOK 读取失败
 */
rt_err_t at24cxx_read(at24cxx_device_t dev, uint32_t ReadAddr, uint8_t *pBuffer, uint16_t NumToRead)
{
    rt_err_t result;
    RT_ASSERT(dev);
    
    if(ReadAddr + NumToRead > AT24CXX_MAX_MEM_ADDRESS)
    {
        return RT_ERROR;
    }
    
    result = rt_mutex_take(dev->lock, RT_WAITING_FOREVER);
    if (result == RT_EOK)
    {
        while (NumToRead)
        {
            *pBuffer++ = at24cxx_read_one_byte(dev, ReadAddr++);
            NumToRead--;
        }
    }
    else
    {
        LOG_E("The at24cxx could not respond  at this time. Please try again");
    }
    rt_mutex_release(dev->lock);

    return RT_EOK;
}

/**
 * This function read the specific numbers of data to the specific position
 *
 * @param bus the name of at24cxx device
 * @param ReadAddr the start position to read
 * @param pBuffer  the read data store position
 * @param NumToRead 
 * @return RT_EOK  write ok.
 */
rt_err_t at24cxx_page_read(at24cxx_device_t dev, uint32_t ReadAddr, uint8_t *pBuffer, uint16_t NumToRead)
{
    rt_err_t result = RT_EOK;
    uint16_t pageReadSize = AT24CXX_PAGE_BYTE - ReadAddr % AT24CXX_PAGE_BYTE;

    RT_ASSERT(dev);

    if(ReadAddr + NumToRead > AT24CXX_MAX_MEM_ADDRESS)
    {
        return RT_ERROR;
    }

    result = rt_mutex_take(dev->lock, RT_WAITING_FOREVER);
    if(result == RT_EOK)
    {
        while (NumToRead)
        {
            if(NumToRead > pageReadSize)
            {
                if(at24cxx_read_page(dev, ReadAddr, pBuffer, pageReadSize))
                {
                    result = RT_ERROR;
                }

                ReadAddr += pageReadSize;
                pBuffer += pageReadSize;
                NumToRead -= pageReadSize;
                pageReadSize = AT24CXX_PAGE_BYTE;
            }
            else
            {
                if(at24cxx_read_page(dev, ReadAddr, pBuffer, NumToRead))
                {
                    result = RT_ERROR;
                }
                NumToRead = 0;
            }
        }
    }
    else
    {
        LOG_E("The at24cxx could not respond  at this time. Please try again");
    }

    rt_mutex_release(dev->lock);
    return result;
}

/**连续写入
 * This function write the specific numbers of data to the specific position;写入,在AT24CXX里面的指定地址开始写入指定个数的数据
 *
 * @param bus the name of at24cxx device;at24cxx                        dev:设备对象
 * @param WriteAddr the start position to write;                                    WriteAddr:写入的首地址
 * @param pBuffer  the data need to write;                                                  *pBuffer:需要写入的数据的首地址
 * @param NumToWrite;                                                                                        NumToWrite:写入数量
 * @return RT_EOK  write ok.at24cxx_device_t dev
 */
rt_err_t at24cxx_write(at24cxx_device_t dev, uint32_t WriteAddr, uint8_t *pBuffer, uint16_t NumToWrite)
{

    //rt_err_t ret; /*YL新增*/
    uint16_t i = 0;
    rt_err_t result;
    RT_ASSERT(dev);
    
    if(WriteAddr + NumToWrite > AT24CXX_MAX_MEM_ADDRESS)
    {
        return RT_ERROR;
    }
    
    result = rt_mutex_take(dev->lock, RT_WAITING_FOREVER);
    if (result == RT_EOK)
    {
        /*以下 原源代码*/
        while (1) //NumToWrite--
        {
            if (at24cxx_write_one_byte(dev, WriteAddr, pBuffer[i]) != RT_EOK)
            {
                rt_thread_mdelay(EE_TWR);
            }
            else
            {
                WriteAddr++;
                i++;
            }
            if (i == NumToWrite)
            {
                break;
            }

        }
        /*以上 原源代码*/
//        while (1) //NumToWrite--
//        {
//            ret = at24cxx_write_one_byte(dev, WriteAddr, pBuffer[i]);
//            if (at24cxx_write_one_byte(dev, WriteAddr, pBuffer[i]) != RT_EOK)
//            {
//                rt_thread_mdelay(EE_TWR);
//            }
//            else
//            {
//                WriteAddr++;
//                i++;
//            }
//            if (i == NumToWrite)
//            {
//                break;
//            }
//
//        }
    }
    else
    {
        LOG_E("The at24cxx could not respond  at this time. Please try again");
    }
    rt_mutex_release(dev->lock);

    return RT_EOK;
}

/**此函数将特定数量的数据写入特定位置
 * This function write the specific numbers of data to the specific position
 *
 * @param bus the name of at24cxx device;                     dev:设备对象
 * @param WriteAddr the start position to write;        WriteAddr:写入的首地址
 * @param pBuffer  the data need to write                *pBuffer:需要写入的数据的首地址
 * @param NumToWrite                                   NumToWrite:写入数量
 * @return RT_EOK  write ok.at24cxx_device_t dev
 */

rt_err_t at24cxx_page_write(at24cxx_device_t dev, uint32_t WriteAddr, uint8_t *pBuffer, uint16_t NumToWrite)
{
    rt_err_t result = RT_EOK;
    uint16_t pageWriteSize = AT24CXX_PAGE_BYTE - WriteAddr % AT24CXX_PAGE_BYTE;

    RT_ASSERT(dev);

    if(WriteAddr + NumToWrite > AT24CXX_MAX_MEM_ADDRESS)
    {
        return RT_ERROR;
    }

    result = rt_mutex_take(dev->lock, RT_WAITING_FOREVER);
    if(result == RT_EOK)
    {
        while (NumToWrite)
        {
            if(NumToWrite > pageWriteSize)
            {
                if(at24cxx_write_page(dev, WriteAddr, pBuffer, pageWriteSize))
                {
                    result = RT_ERROR;
                }
                rt_thread_mdelay(EE_TWR);    // wait 5ms befor next operation

                WriteAddr += pageWriteSize;
                pBuffer += pageWriteSize;
                NumToWrite -= pageWriteSize;
                pageWriteSize = AT24CXX_PAGE_BYTE;
            }
            else
            {
                if(at24cxx_write_page(dev, WriteAddr, pBuffer, NumToWrite))
                {
                    result = RT_ERROR;
                }
                rt_thread_mdelay(EE_TWR);   // wait 5ms befor next operation

                NumToWrite = 0;
            }
        }
    }
    else
    {
        LOG_E("The at24cxx could not respond  at this time. Please try again");
    }

    rt_mutex_release(dev->lock);
    return result;
}

/**设备初始化
 * This function initializes at24cxx registered device driver ;根据总线名称,自动初始化对应的 AT24CXX 设备
 *
 * @param dev the name of at24cxx device ;i2c_bus_name,i2c 设备名称
 * @param
 * @return the at24cxx device.
 */
at24cxx_device_t at24cxx_init(const char *i2c_bus_name, uint8_t AddrInput)
{
    at24cxx_device_t dev;

    RT_ASSERT(i2c_bus_name);

    dev = rt_calloc(1, sizeof(struct at24cxx_device));
    if (dev == RT_NULL)
    {
        LOG_E("Can't allocate memory for at24cxx device on '%s' ", i2c_bus_name);
        return RT_NULL;
    }

    dev->i2c = rt_i2c_bus_device_find(i2c_bus_name);
    if (dev->i2c == RT_NULL)
    {
        LOG_E("Can't find at24cxx device on '%s' ", i2c_bus_name);
        rt_free(dev);
        return RT_NULL;
    }

    dev->lock = rt_mutex_create("mutex_at24cxx", RT_IPC_FLAG_FIFO);
    if (dev->lock == RT_NULL)
    {
        LOG_E("Can't create mutex for at24cxx device on '%s' ", i2c_bus_name);
        rt_free(dev);
        return RT_NULL;
    }

    dev->AddrInput = AddrInput;
    return dev;
}

/**
 * This function releases memory and deletes mutex lock
 * 如果设备不再使用,反初始化将回收 at24cxx 设备的相关资源
 * @param dev the pointer of device driver structure
 */
void at24cxx_deinit(at24cxx_device_t dev)
{
    RT_ASSERT(dev);

    rt_mutex_delete(dev->lock);

    rt_free(dev);
}

uint8_t TEST_BUFFER[] = "WELCOM TO RTT";
#define SIZE sizeof(TEST_BUFFER)

void at24cxx(int argc, char *argv[])
{
    static at24cxx_device_t dev = RT_NULL;

    if (argc > 1)
    {
        if (!strcmp(argv[1], "probe"))
        {
            if (argc > 2)
            {
                /* initialize the sensor when first probe */
                if (!dev || strcmp(dev->i2c->parent.parent.name, argv[2]))
                {
                    /* deinit the old device */
                    if (dev)
                    {
                        at24cxx_deinit(dev);
                    }
                    dev = at24cxx_init(argv[2], atoi(argv[3]));
                }
            }
            else
            {
                rt_kprintf("at24cxx probe <dev_name> <AddrInput> - probe sensor by given name\n");
            }
        }
        else if (!strcmp(argv[1], "read"))
        {
            if (dev)
            {
                uint8_t testbuffer[50];

                /* read the eeprom data */
                at24cxx_read(dev, 0, testbuffer, SIZE);

                rt_kprintf("read at24cxx : %s\n", testbuffer);

            }
            else
            {
                rt_kprintf("Please using 'at24cxx probe <dev_name>' first\n");
            }
        }
        else if (!strcmp(argv[1], "write"))
        {
            at24cxx_write(dev, 0, TEST_BUFFER, SIZE);
            rt_kprintf("write ok\n");
        }
        else if (!strcmp(argv[1], "check"))
        {
            if (at24cxx_check(dev) == 1)
            {
                rt_kprintf("check faild \n");
            }
        }
        else
        {
            rt_kprintf("Unknown command. Please enter 'at24cxx0' for help\n");
        }
    }
    else
    {
        rt_kprintf("Usage:\n");
        rt_kprintf("at24cxx probe <dev_name>   - probe eeprom by given name\n");
        rt_kprintf("at24cxx check              - check eeprom at24cxx \n");
        rt_kprintf("at24cxx read               - read eeprom at24cxx data\n");
        rt_kprintf("at24cxx write              - write eeprom at24cxx data\n");

    }
}
MSH_CMD_EXPORT(at24cxx, at24cxx eeprom function);
#endif

at24cxx.h

/*
 * Copyright (c) 2006-2018, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2019-04-13     XiaojieFan   the first version
 * 2019-12-04     RenMing      Use PAGE WRITE instead of BYTE WRITE and input address can be selected 
 */

#ifndef __AT24CXX_H__
#define __AT24CXX_H__

#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>

#define AT24C01     0
#define AT24C02     1
#define AT24C04     2
#define AT24C08     3
#define AT24C16     4
#define AT24C32     5
#define AT24C64     6
#define AT24C128    7
#define AT24C256    8
#define AT24C512    9
#define AT24CTYPE   10   // Number of supported types


/*
 *注意事项:
 *请在at24cxx.h中修改EE_TYPE为自己使用的型号(默认为AT25C512) 。
 *请在at24cxx.h中修改EE_TWR为自己使用EEPROM的Write Cycle Time,具体值请查看芯片datasheet(默认为5ms) 。
 *从设备地址为7位地址 0x50, 而不是 0xA0 。
 */


#define EE_TWR      5 //Write Cycle Time;写周期时间 ms

#ifndef EE_TYPE
#define EE_TYPE     AT24C64
#endif

struct at24cxx_device
{
    struct rt_i2c_bus_device *i2c;
    rt_mutex_t lock;
    uint8_t AddrInput;
};
typedef struct at24cxx_device *at24cxx_device_t;


extern uint8_t at24cxx_read_one_byte(at24cxx_device_t dev, uint16_t readAddr);
extern rt_err_t at24cxx_write_one_byte(at24cxx_device_t dev, uint16_t writeAddr, uint8_t dataToWrite);

extern at24cxx_device_t at24cxx_init(const char *i2c_bus_name, uint8_t AddrInput);
extern rt_err_t at24cxx_read(at24cxx_device_t dev, uint32_t ReadAddr, uint8_t *pBuffer, uint16_t NumToRead);
extern rt_err_t at24cxx_write(at24cxx_device_t dev, uint32_t WriteAddr, uint8_t *pBuffer, uint16_t NumToWrite);
extern rt_err_t at24cxx_page_read(at24cxx_device_t dev, uint32_t ReadAddr, uint8_t *pBuffer, uint16_t NumToRead);
extern rt_err_t at24cxx_page_write(at24cxx_device_t dev, uint32_t WriteAddr, uint8_t *pBuffer, uint16_t NumToWrite);


#endif

文章来源:https://blog.csdn.net/yutian0606/article/details/135609597
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。