Hadoop安装笔记2单机/伪分布式配置_Hadoop3.1.3——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项——任务2:离线数据处理

发布时间:2023年12月28日

紧接着上一篇博客:Hadoop安装笔记1:

Hadoop安装笔记1单机/伪分布式配置_Hadoop3.1.3——备赛笔记——2024全国职业院校技能大赛“大数据应用开发”赛项——任务2:离线数据处理-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Zhiyilang/article/details/135236893?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22135236893%22%2C%22source%22%3A%22Zhiyilang%22%7D

为力了完成从宿主机/opt目录下将文件hadoop-3.1.3.tar.gz、jdk-8u212-linux-x64.tar.gz,apache-zookeeper-3.5.7-bin.tar.gz复制到容器Master中的/opt/software路径中(若路径不存在,则需新建)的任务。

在进行接下来的配置之前,我们还需要安装一个Docker:

安装Docker

1、使用APT 安装doker?>>先安装依赖

sudo apt-get install docker

在Linux命令行界面中,执行如下Shell命令(注意:当前登录用户名是hadoop):

cd /opt/software
sudo mkdir jvm #创建/opt/software/jvm目录用来存放JDK文件
cd ~ #进入hadoop用户的主目录
cd Downloads #注意区分大小写字母,刚才已经通过FTP软件把JDK安装包jdk-8u162-linux-x64.tar.gz上传到该目录下
sudo tar -zxvf ./jdk-8u162-linux-x64.tar.gz -C /usr/lib/jvm #把JDK文件解压到/usr/lib/jvm目录下

Shell 命令

上面使用了解压缩命令tar,如果对Linux命令不熟悉,可以参考常用的Linux命令用法

JDK文件解压缩以后,可以执行如下命令到/usr/lib/jvm目录查看一下:

cd /usr/lib/jvm
ls

Shell 命令

可以看到,在/usr/lib/jvm目录下有个jdk1.8.0_162目录。
下面继续执行如下命令,设置环境变量:

cd ~
vim ~/.bashrc

Shell 命令

上面命令使用vim编辑器(查看vim编辑器使用方法)打开了hadoop这个用户的环境变量配置文件,请在这个文件的开头位置,添加如下几行内容:

export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_162
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOME}/bin:$PATH

保存.bashrc文件并退出vim编辑器。然后,继续执行如下命令让.bashrc文件的配置立即生效:

source ~/.bashrc

Shell 命令

这时,可以使用如下命令查看是否安装成功:

java -version

Shell 命令

如果能够在屏幕上返回如下信息,则说明安装成功:

hadoop@ubuntu:~$ java -version
java version "1.8.0_162"
Java(TM) SE Runtime Environment (build 1.8.0_162-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.162-b12, mixed mode)

至此,就成功安装了Java环境。下面就可以进入Hadoop的安装。

安装 Hadoop3.1.3

Hadoop安装文件,可以到Hadoop官网下载hadoop-3.1.3.tar.gz。
也可以直接点击这里从百度云盘下载软件(提取码:lnwl),进入百度网盘后,进入“软件”目录,找到hadoop-3.1.3.tar.gz文件,下载到本地。
我们选择将 Hadoop 安装至 /usr/local/ 中:


sudo tar -zxf ~/下载/hadoop-3.1.3.tar.gz -C /usr/local # 解压到/usr/local中
cd /usr/local/
sudo mv ./hadoop-3.1.3/ ./hadoop # 将文件夹名改为hadoop
sudo chown -R hadoop ./hadoop # 修改文件权限

Shell 命令

Hadoop 解压后即可使用。输入如下命令来检查 Hadoop 是否可用,成功则会显示 Hadoop 版本信息:


cd /usr/local/hadoop
./bin/hadoop version

Shell 命令

相对路径与绝对路径: 请务必注意命令中的相对路径与绝对路径,本文后续出现的?./bin/..../etc/...?等包含 ./ 的路径,均为相对路径,以 /usr/local/hadoop 为当前目录。例如在 /usr/local/hadoop 目录中执行?./bin/hadoop version?等同于执行?/usr/local/hadoop/bin/hadoop version。可以将相对路径改成绝对路径来执行,但如果你是在主文件夹 ~ 中执行?./bin/hadoop version,执行的会是?/home/hadoop/bin/hadoop version,就不是我们所想要的了。

Hadoop单机配置(非分布式)

Hadoop 默认模式为非分布式模式(本地模式),无需进行其他配置即可运行。非分布式即单 Java 进程,方便进行调试。

现在我们可以执行例子来感受下 Hadoop 的运行。Hadoop 附带了丰富的例子(运行?./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar?可以看到所有例子),包括 wordcount、terasort、join、grep 等。

在此我们选择运行 grep 例子,我们将 input 文件夹中的所有文件作为输入,筛选当中符合正则表达式 dfs[a-z.]+ 的单词并统计出现的次数,最后输出结果到 output 文件夹中。


cd /usr/local/hadoop
mkdir ./input
cp ./etc/hadoop/*.xml ./input # 将配置文件作为输入文件
./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar grep ./input ./output 'dfs[a-z.]+'
cat ./output/* # 查看运行结果

Shell 命令

执行成功后如下所示,输出了作业的相关信息,输出的结果是符合正则的单词 dfsadmin 出现了1次

Hadoop单机模式运行grep的输出结果??

注意,Hadoop 默认不会覆盖结果文件,因此再次运行上面实例会提示出错,需要先将?./output?删除。

rm -r ./output

Shell 命令

Hadoop伪分布式配置

Hadoop 可以在单节点上以伪分布式的方式运行,Hadoop 进程以分离的 Java 进程来运行,节点既作为 NameNode 也作为 DataNode,同时,读取的是 HDFS 中的文件。

Hadoop 的配置文件位于 /usr/local/hadoop/etc/hadoop/ 中,伪分布式需要修改2个配置文件?core-site.xml?和?hdfs-site.xml?。Hadoop的配置文件是 xml 格式,每个配置以声明 property 的 name 和 value 的方式来实现。

修改配置文件?core-site.xml?(通过 gedit 编辑会比较方便:?gedit ./etc/hadoop/core-site.xml),将当中的


<configuration>
</configuration>

XML

修改为下面配置:


<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/usr/local/hadoop/tmp</value>
<description>Abase for other temporary directories.</description>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>

XML

同样的,修改配置文件?hdfs-site.xml


<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/usr/local/hadoop/tmp/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/usr/local/hadoop/tmp/dfs/data</value>
</property>
</configuration>

XML

Hadoop配置文件说明:

Hadoop 的运行方式是由配置文件决定的(运行 Hadoop 时会读取配置文件),因此如果需要从伪分布式模式切换回非分布式模式,需要删除 core-site.xml 中的配置项。

此外,伪分布式虽然只需要配置 fs.defaultFS 和 dfs.replication 就可以运行(官方教程如此),不过若没有配置 hadoop.tmp.dir 参数,则默认使用的临时目录为 /tmp/hadoo-hadoop,而这个目录在重启时有可能被系统清理掉,导致必须重新执行 format 才行。所以我们进行了设置,同时也指定 dfs.namenode.name.dir 和 dfs.datanode.data.dir,否则在接下来的步骤中可能会出错。

配置完成后,执行 NameNode 的格式化:


cd /usr/local/hadoop
./bin/hdfs namenode -format

Shell 命令

成功的话,会看到 "successfully formatted" 的提示,具体返回信息类似如下:

2020-01-08 15:31:31,560 INFO namenode.NameNode: STARTUP_MSG: 
/************************************************************

STARTUP_MSG: Starting NameNode
STARTUP_MSG:   host = hadoop/127.0.1.1
STARTUP_MSG:   args = [-format]
STARTUP_MSG:  version = 3.1.3
*************************************************************/

......
2020-01-08 15:31:35,677 INFO common.Storage: Storage directory /usr/local/hadoop/tmp/dfs/name **has been successfully formatted**.
2020-01-08 15:31:35,700 INFO namenode.FSImageFormatProtobuf: Saving image file /usr/local/hadoop/tmp/dfs/name/current/fsimage.ckpt_0000000000000000000 using no compression
2020-01-08 15:31:35,770 INFO namenode.FSImageFormatProtobuf: Image file /usr/local/hadoop/tmp/dfs/name/current/fsimage.ckpt_0000000000000000000 of size 393 bytes saved in 0 seconds .
2020-01-08 15:31:35,810 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
2020-01-08 15:31:35,816 INFO namenode.FSImage: FSImageSaver clean checkpoint: txid = 0 when meet shutdown.
2020-01-08 15:31:35,816 INFO namenode.NameNode: SHUTDOWN_MSG:  
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop/127.0.1.1
*************************************************************/

如果在这一步时提示?Error: JAVA_HOME is not set and could not be found.?的错误,则说明之前设置 JAVA_HOME 环境变量那边就没设置好,请按教程先设置好 JAVA_HOME 变量,否则后面的过程都是进行不下去的。如果已经按照前面教程在.bashrc文件中设置了JAVA_HOME,还是出现?Error: JAVA_HOME is not set and could not be found.?的错误,那么,请到hadoop的安装目录修改配置文件“/usr/local/hadoop/etc/hadoop/hadoop-env.sh”,在里面找到“export JAVA_HOME=${JAVA_HOME}”这行,然后,把它修改成JAVA安装路径的具体地址,比如,“export JAVA_HOME=/usr/lib/jvm/default-java”,然后,再次启动Hadoop。

接着开启 NameNode 和 DataNode 守护进程。


cd /usr/local/hadoop
./sbin/start-dfs.sh #start-dfs.sh是个完整的可执行文件,中间没有空格

Shell 命令

若出现如下SSH提示,输入yes即可。

启动Hadoop时的SSH提示??

启动时可能会出现如下 WARN 提示:WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable WARN 提示可以忽略,并不会影响正常使用。

启动 Hadoop 时提示 Could not resolve hostname:

如果启动 Hadoop 时遇到输出非常多“ssh: Could not resolve hostname xxx”的异常情况,如下图所示:

启动Hadoop时的异常提示??

这个并不是 ssh 的问题,可通过设置 Hadoop 环境变量来解决。首先按键盘的?ctrl + c?中断启动,然后在 ~/.bashrc 中,增加如下两行内容(设置过程与 JAVA_HOME 变量一样,其中 HADOOP_HOME 为 Hadoop 的安装目录):


export HADOOP_HOME=/usr/local/hadoop
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

Shell

保存后,务必执行?source ~/.bashrc?使变量设置生效,然后再次执行?./sbin/start-dfs.sh?启动 Hadoop。

启动完成后,可以通过命令?jps?来判断是否成功启动,若成功启动则会列出如下进程: "NameNode"、"DataNode" 和 "SecondaryNameNode"(如果 SecondaryNameNode 没有启动,请运行 sbin/stop-dfs.sh 关闭进程,然后再次尝试启动尝试)。如果没有 NameNode 或 DataNode ,那就是配置不成功,请仔细检查之前步骤,或通过查看启动日志排查原因。

通过jps查看启动的Hadoop进程??

Hadoop无法正常启动的解决方法: 一般可以查看启动日志来排查原因,注意几点:

  • 启动时会提示形如 "DBLab-XMU: starting namenode, logging to /usr/local/hadoop/logs/hadoop-hadoop-namenode-DBLab-XMU.out",其中 DBLab-XMU 对应你的机器名,但其实启动日志信息是记录在 /usr/local/hadoop/logs/hadoop-hadoop-namenode-DBLab-XMU.log 中,所以应该查看这个后缀为?.log?的文件;
  • 每一次的启动日志都是追加在日志文件之后,所以得拉到最后面看,对比下记录的时间就知道了。
  • 一般出错的提示在最后面,通常是写着 Fatal、Error、Warning 或者 Java Exception 的地方。
  • 可以在网上搜索一下出错信息,看能否找到一些相关的解决方法。

此外,若是 DataNode 没有启动,可尝试如下的方法(注意这会删除 HDFS 中原有的所有数据,如果原有的数据很重要请不要这样做):


# 针对 DataNode 没法启动的解决方法
cd /usr/local/hadoop
./sbin/stop-dfs.sh # 关闭
rm -r ./tmp # 删除 tmp 文件,注意这会删除 HDFS 中原有的所有数据
./bin/hdfs namenode -format # 重新格式化 NameNode
./sbin/start-dfs.sh # 重启

Shell 命令

成功启动后,可以访问 Web 界面?http://localhost:9870?查看 NameNode 和 Datanode 信息,还可以在线查看 HDFS 中的文件。

运行Hadoop伪分布式实例

上面的单机模式,grep 例子读取的是本地数据,伪分布式读取的则是 HDFS 上的数据。要使用 HDFS,首先需要在 HDFS 中创建用户目录:


./bin/hdfs dfs -mkdir -p /user/hadoop

Shell 命令

注意: 教材《大数据技术原理与应用》的命令是以"./bin/hadoop dfs"开头的Shell命令方式,实际上有三种shell命令方式。
1. hadoop fs
2. hadoop dfs
3. hdfs dfs

hadoop fs适用于任何不同的文件系统,比如本地文件系统和HDFS文件系统
hadoop dfs只能适用于HDFS文件系统
hdfs dfs跟hadoop dfs的命令作用一样,也只能适用于HDFS文件系统

接着将 ./etc/hadoop 中的 xml 文件作为输入文件复制到分布式文件系统中,即将 /usr/local/hadoop/etc/hadoop 复制到分布式文件系统中的 /user/hadoop/input 中。我们使用的是 hadoop 用户,并且已创建相应的用户目录 /user/hadoop ,因此在命令中就可以使用相对路径如 input,其对应的绝对路径就是 /user/hadoop/input:


./bin/hdfs dfs -mkdir input
./bin/hdfs dfs -put ./etc/hadoop/*.xml input

Shell 命令

复制完成后,可以通过如下命令查看文件列表:


./bin/hdfs dfs -ls input

Shell 命令

伪分布式运行 MapReduce 作业的方式跟单机模式相同,区别在于伪分布式读取的是HDFS中的文件(可以将单机步骤中创建的本地 input 文件夹,输出结果 output 文件夹都删掉来验证这一点)。


./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar grep input output 'dfs[a-z.]+'

Shell 命令

查看运行结果的命令(查看的是位于 HDFS 中的输出结果):


./bin/hdfs dfs -cat output/*

Shell 命令

结果如下,注意到刚才我们已经更改了配置文件,所以运行结果不同。

Hadoop伪分布式运行grep结果??

我们也可以将运行结果取回到本地:


rm -r ./output # 先删除本地的 output 文件夹(如果存在)
./bin/hdfs dfs -get output ./output # 将 HDFS 上的 output 文件夹拷贝到本机
cat ./output/*

Shell 命令

Hadoop 运行程序时,输出目录不能存在,否则会提示错误 "org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://localhost:9000/user/hadoop/output already exists" ,因此若要再次执行,需要执行如下命令删除 output 文件夹:


./bin/hdfs dfs -rm -r output # 删除 output 文件夹

Shell 命令

运行程序时,输出目录不能存在: 运行 Hadoop 程序时,为了防止覆盖结果,程序指定的输出目录(如 output)不能存在,否则会提示错误,因此运行前需要先删除输出目录。在实际开发应用程序时,可考虑在程序中加上如下代码,能在每次运行时自动删除输出目录,避免繁琐的命令行操作:


Configuration conf = new Configuration();
Job job = new Job(conf);

/* 删除输出目录 */
Path outputPath = new Path(args[1]);
outputPath.getFileSystem(conf).delete(outputPath, true);

Java

若要关闭 Hadoop,则运行


./sbin/stop-dfs.sh

Shell 命令

注意: 下次启动 hadoop 时,无需进行 NameNode 的初始化,只需要运行?./sbin/start-dfs.sh?就可以!

安装Hadoop集群

在平时的学习中,我们使用伪分布式就足够了。如果需要安装 Hadoop 集群,请查看Hadoop集群安装配置教程(Hadoop3.1.3)

文章来源:https://blog.csdn.net/Zhiyilang/article/details/135276305
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。