论文中的一处推导

发布时间:2024年01月22日

这里写自定义目录标题

x H diag { w w H } x x H w w H x \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{w}\mathbf{w}^{H}\right\}\mathbf{x}}{\mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x}} xHwwHxxHdiag{wwH}x?

要将给定的表达式化简为形如 ∥ a ∥ 2 ∥ b ∥ 2 \frac{{\|\mathbf{a}\|^2}}{{\|\mathbf{b}\|^2}} b2a2? 的形式,我们可以考虑定义新的向量 a \mathbf{a} a b \mathbf{b} b,使得原始的分子和分母分别变为 ∥ a ∥ 2 \|\mathbf{a}\|^2 a2 ∥ b ∥ 2 \|\mathbf{b}\|^2 b2

给定的表达式是:

[
x H diag { w w H } x x H w w H x \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{w}\mathbf{w}^{H}\right\}\mathbf{x}}{\mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x}} xHwwHxxHdiag{wwH}x?
]

首先,令 a = w H x \mathbf{a} = \mathbf{w}^{H}\mathbf{x} a=wHx,这样我们就有 ∥ a ∥ 2 = x H w w H x \|\mathbf{a}\|^2 = \mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x} a2=xHwwHx

然后,令 b = w \mathbf{b} = \mathbf{w} b=w,这样我们就有 ∥ b ∥ 2 = w H w \|\mathbf{b}\|^2 = \mathbf{w}^{H}\mathbf{w} b2=wHw

现在,我们可以将原始的表达式用 a \mathbf{a} a b \mathbf{b} b 重新表示:

[
x H diag { w w H } x x H w w H x = x H diag { b b H } x ∥ a ∥ 2 \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{w}\mathbf{w}^{H}\right\}\mathbf{x}}{\mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x}} = \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\mathbf{x}}{\|\mathbf{a}\|^2} xHwwHxxHdiag{wwH}x?=a2xHdiag{bbH}x?
]

最后,我们可以进一步简化为:

[
f ( w , Θ ) = x H diag { b b H } x ∥ a ∥ 2 = ∥ b ∥ 2 ∥ x ∥ 2 ∥ a ∥ 2 = ∥ w ∥ 2 ∥ x ∥ 2 ∥ w H x ∥ 2 , \mathbf{f}\left(\mathbf{w},\mathbf{\Theta}\right) = \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\mathbf{x}}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{b}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{w}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{w}^{H}\mathbf{x}\|^2}, f(w,Θ)=a2xHdiag{bbH}x?=a2b2x2?=wHx2w2x2?,

where

x = t 1 T t 1 R H Θ H s T s R H Θ H r 2 T \mathbf{x} = \mathbf{t}_{1T}\mathbf{t}_{1R}^{H}\mathbf{\Theta}^{H}\mathbf{s}_{T}\mathbf{s}_{R}^{H}\mathbf{\Theta}^{H}\mathbf{r}_{2T} x=t1T?t1RH?ΘHsT?sRH?ΘHr2T?
]

or

[
f ( w , Θ 1 , Θ 2 ) = x H diag { b b H } x ∥ a ∥ 2 = ∥ b ∥ 2 ∥ x ∥ 2 ∥ a ∥ 2 = ∥ w ∥ 2 ∥ x ∥ 2 ∥ w H x ∥ 2 , \mathbf{f}\left(\mathbf{w},\mathbf{\Theta}_1,\mathbf{\Theta}_2\right) = \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\mathbf{x}}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{b}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{w}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{w}^{H}\mathbf{x}\|^2}, f(w,Θ1?,Θ2?)=a2xHdiag{bbH}x?=a2b2x2?=wHx2w2x2?,

where

x = t 1 T t 1 R H Θ 1 H s T s R H Θ 2 H r 2 T = h \mathbf{x} = \mathbf{t}_{1T}\mathbf{t}_{1R}^{H}\mathbf{\Theta}_{1}^{H}\mathbf{s}_{T}\mathbf{s}_{R}^{H}\mathbf{\Theta}_{2}^{H}\mathbf{r}_{2T} = \mathbf{h} x=t1T?t1RH?Θ1H?sT?sRH?Θ2H?r2T?=h
]

?(P7)? min ? w , Θ 1 , Θ 2 ∥ w ∥ 2 ∥ t 1 T t 1 R H Θ 1 H s T s R H Θ 2 H r 2 T ∥ 2 ∥ w H t 1 T t 1 R H Θ 1 H s T s R H Θ 2 H r 2 T ∥ 2 ?s.t.? ( 1 + β T ) tr ? ( w w H ) ≤ P t ,? Θ 1 = diag ? { θ 11 , ? ? , θ 1 L } , ∣ θ 1 i ∣ = 1 , i ∈ { 1 , ? ? , L } , Θ 2 = diag ? { θ 21 , ? ? , θ 2 L } , ∣ θ 2 i ∣ = 1 , i ∈ { 1 , ? ? , L } . \begin{align} \text { (P7) } \quad \min _{\mathbf{w}, \boldsymbol{\Theta}_1, \boldsymbol{\Theta}_2} & \frac {\|\mathbf{w}\|^2 \|\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}_{1}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}_{2}^{\mathrm{H}}\mathbf{r}_{2T}\|^2}{\|\mathbf{w}^{\mathrm{H}}\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}_{1}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}_{2}^{\mathrm{H}}\mathbf{r}_{2T}\|^2} \\ \text { s.t. } &\left( 1 + \beta_T \right) \operatorname{tr}\left(\mathbf{w w}^{\mathrm{H}}\right) \leq P_t \text {, } \\ & \boldsymbol{\Theta}_1=\operatorname{diag}\left\{\theta_{11}, \cdots, \theta_{1L}\right\}, \\ & \left|\theta_{1i}\right|=1, \quad i \in\{1, \cdots, L\} , \\ & \boldsymbol{\Theta}_2=\operatorname{diag}\left\{\theta_{21}, \cdots, \theta_{2L}\right\}, \\ & \left|\theta_{2i}\right|=1, \quad i \in\{1, \cdots, L\} . \\ \end{align} ?(P7)?w,Θ1?,Θ2?min??s.t.??wHt1T?t1RH?Θ1H?sT?sRH?Θ2H?r2T?2w2t1T?t1RH?Θ1H?sT?sRH?Θ2H?r2T?2?(1+βT?)tr(wwH)Pt?,?Θ1?=diag{θ11?,?,θ1L?},θ1i?=1,i{1,?,L},Θ2?=diag{θ21?,?,θ2L?},θ2i?=1,i{1,?,L}.??

?(P7)? min ? w , Θ ∥ w ∥ 2 ∥ t 1 T t 1 R H Θ H s T s R H Θ H r 2 T ∥ 2 ∥ w H t 1 T t 1 R H Θ H s T s R H Θ H r 2 T ∥ 2 ?s.t.? ( 1 + β T ) tr ? ( w w H ) ≤ P t ,? Θ = diag ? { θ 1 , ? ? , θ L } , ∣ θ i ∣ = 1 , i ∈ { 1 , ? ? , L } . \begin{align} \text { (P7) } \quad \min _{\mathbf{w}, \boldsymbol{\Theta}} & \frac {\|\mathbf{w}\|^2 \|\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{r}_{2T}\|^2}{\|\mathbf{w}^{\mathrm{H}}\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{r}_{2T}\|^2} \\ \text { s.t. } &\left( 1 + \beta_T \right) \operatorname{tr}\left(\mathbf{w w}^{\mathrm{H}}\right) \leq P_t \text {, } \\ & \boldsymbol{\Theta}=\operatorname{diag}\left\{\theta_{1}, \cdots, \theta_{L}\right\}, \\ & \left|\theta_{i}\right|=1, \quad i \in\{1, \cdots, L\} . \\ \end{align} ?(P7)?w,Θmin??s.t.??wHt1T?t1RH?ΘHsT?sRH?ΘHr2T?2w2t1T?t1RH?ΘHsT?sRH?ΘHr2T?2?(1+βT?)tr(wwH)Pt?,?Θ=diag{θ1?,?,θL?},θi?=1,i{1,?,L}.??

其实这里的norm应该改成abs

w = P t 1 + β T \mathbf{w} = \sqrt{\frac{P_t}{1+\beta_T}} w=1+βT?Pt?? ?

文章来源:https://blog.csdn.net/qq_45542321/article/details/135757329
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。