x H diag { w w H } x x H w w H x \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{w}\mathbf{w}^{H}\right\}\mathbf{x}}{\mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x}} xHwwHxxHdiag{wwH}x?
要将给定的表达式化简为形如 ∥ a ∥ 2 ∥ b ∥ 2 \frac{{\|\mathbf{a}\|^2}}{{\|\mathbf{b}\|^2}} ∥b∥2∥a∥2? 的形式,我们可以考虑定义新的向量 a \mathbf{a} a 和 b \mathbf{b} b,使得原始的分子和分母分别变为 ∥ a ∥ 2 \|\mathbf{a}\|^2 ∥a∥2 和 ∥ b ∥ 2 \|\mathbf{b}\|^2 ∥b∥2。
给定的表达式是:
[
x
H
diag
{
w
w
H
}
x
x
H
w
w
H
x
\frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{w}\mathbf{w}^{H}\right\}\mathbf{x}}{\mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x}}
xHwwHxxHdiag{wwH}x?
]
首先,令 a = w H x \mathbf{a} = \mathbf{w}^{H}\mathbf{x} a=wHx,这样我们就有 ∥ a ∥ 2 = x H w w H x \|\mathbf{a}\|^2 = \mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x} ∥a∥2=xHwwHx。
然后,令 b = w \mathbf{b} = \mathbf{w} b=w,这样我们就有 ∥ b ∥ 2 = w H w \|\mathbf{b}\|^2 = \mathbf{w}^{H}\mathbf{w} ∥b∥2=wHw。
现在,我们可以将原始的表达式用 a \mathbf{a} a 和 b \mathbf{b} b 重新表示:
[
x
H
diag
{
w
w
H
}
x
x
H
w
w
H
x
=
x
H
diag
{
b
b
H
}
x
∥
a
∥
2
\frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{w}\mathbf{w}^{H}\right\}\mathbf{x}}{\mathbf{x}^{H}\mathbf{w}\mathbf{w}^{H}\mathbf{x}} = \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\mathbf{x}}{\|\mathbf{a}\|^2}
xHwwHxxHdiag{wwH}x?=∥a∥2xHdiag{bbH}x?
]
最后,我们可以进一步简化为:
[
f
(
w
,
Θ
)
=
x
H
diag
{
b
b
H
}
x
∥
a
∥
2
=
∥
b
∥
2
∥
x
∥
2
∥
a
∥
2
=
∥
w
∥
2
∥
x
∥
2
∥
w
H
x
∥
2
,
\mathbf{f}\left(\mathbf{w},\mathbf{\Theta}\right) = \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\mathbf{x}}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{b}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{w}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{w}^{H}\mathbf{x}\|^2},
f(w,Θ)=∥a∥2xHdiag{bbH}x?=∥a∥2∥b∥2∥x∥2?=∥wHx∥2∥w∥2∥x∥2?,
where
x
=
t
1
T
t
1
R
H
Θ
H
s
T
s
R
H
Θ
H
r
2
T
\mathbf{x} = \mathbf{t}_{1T}\mathbf{t}_{1R}^{H}\mathbf{\Theta}^{H}\mathbf{s}_{T}\mathbf{s}_{R}^{H}\mathbf{\Theta}^{H}\mathbf{r}_{2T}
x=t1T?t1RH?ΘHsT?sRH?ΘHr2T?
]
or
[
f
(
w
,
Θ
1
,
Θ
2
)
=
x
H
diag
{
b
b
H
}
x
∥
a
∥
2
=
∥
b
∥
2
∥
x
∥
2
∥
a
∥
2
=
∥
w
∥
2
∥
x
∥
2
∥
w
H
x
∥
2
,
\mathbf{f}\left(\mathbf{w},\mathbf{\Theta}_1,\mathbf{\Theta}_2\right) = \frac {\mathbf{x}^{H}\text{diag}\left\{\mathbf{b}\mathbf{b}^{H}\right\}\mathbf{x}}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{b}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{a}\|^2} = \frac {\|\mathbf{w}\|^2 \|\mathbf{x}\|^2}{\|\mathbf{w}^{H}\mathbf{x}\|^2},
f(w,Θ1?,Θ2?)=∥a∥2xHdiag{bbH}x?=∥a∥2∥b∥2∥x∥2?=∥wHx∥2∥w∥2∥x∥2?,
where
x
=
t
1
T
t
1
R
H
Θ
1
H
s
T
s
R
H
Θ
2
H
r
2
T
=
h
\mathbf{x} = \mathbf{t}_{1T}\mathbf{t}_{1R}^{H}\mathbf{\Theta}_{1}^{H}\mathbf{s}_{T}\mathbf{s}_{R}^{H}\mathbf{\Theta}_{2}^{H}\mathbf{r}_{2T} = \mathbf{h}
x=t1T?t1RH?Θ1H?sT?sRH?Θ2H?r2T?=h
]
?(P7)? min ? w , Θ 1 , Θ 2 ∥ w ∥ 2 ∥ t 1 T t 1 R H Θ 1 H s T s R H Θ 2 H r 2 T ∥ 2 ∥ w H t 1 T t 1 R H Θ 1 H s T s R H Θ 2 H r 2 T ∥ 2 ?s.t.? ( 1 + β T ) tr ? ( w w H ) ≤ P t ,? Θ 1 = diag ? { θ 11 , ? ? , θ 1 L } , ∣ θ 1 i ∣ = 1 , i ∈ { 1 , ? ? , L } , Θ 2 = diag ? { θ 21 , ? ? , θ 2 L } , ∣ θ 2 i ∣ = 1 , i ∈ { 1 , ? ? , L } . \begin{align} \text { (P7) } \quad \min _{\mathbf{w}, \boldsymbol{\Theta}_1, \boldsymbol{\Theta}_2} & \frac {\|\mathbf{w}\|^2 \|\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}_{1}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}_{2}^{\mathrm{H}}\mathbf{r}_{2T}\|^2}{\|\mathbf{w}^{\mathrm{H}}\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}_{1}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}_{2}^{\mathrm{H}}\mathbf{r}_{2T}\|^2} \\ \text { s.t. } &\left( 1 + \beta_T \right) \operatorname{tr}\left(\mathbf{w w}^{\mathrm{H}}\right) \leq P_t \text {, } \\ & \boldsymbol{\Theta}_1=\operatorname{diag}\left\{\theta_{11}, \cdots, \theta_{1L}\right\}, \\ & \left|\theta_{1i}\right|=1, \quad i \in\{1, \cdots, L\} , \\ & \boldsymbol{\Theta}_2=\operatorname{diag}\left\{\theta_{21}, \cdots, \theta_{2L}\right\}, \\ & \left|\theta_{2i}\right|=1, \quad i \in\{1, \cdots, L\} . \\ \end{align} ?(P7)?w,Θ1?,Θ2?min??s.t.??∥wHt1T?t1RH?Θ1H?sT?sRH?Θ2H?r2T?∥2∥w∥2∥t1T?t1RH?Θ1H?sT?sRH?Θ2H?r2T?∥2?(1+βT?)tr(wwH)≤Pt?,?Θ1?=diag{θ11?,?,θ1L?},∣θ1i?∣=1,i∈{1,?,L},Θ2?=diag{θ21?,?,θ2L?},∣θ2i?∣=1,i∈{1,?,L}.??
?(P7)? min ? w , Θ ∥ w ∥ 2 ∥ t 1 T t 1 R H Θ H s T s R H Θ H r 2 T ∥ 2 ∥ w H t 1 T t 1 R H Θ H s T s R H Θ H r 2 T ∥ 2 ?s.t.? ( 1 + β T ) tr ? ( w w H ) ≤ P t ,? Θ = diag ? { θ 1 , ? ? , θ L } , ∣ θ i ∣ = 1 , i ∈ { 1 , ? ? , L } . \begin{align} \text { (P7) } \quad \min _{\mathbf{w}, \boldsymbol{\Theta}} & \frac {\|\mathbf{w}\|^2 \|\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{r}_{2T}\|^2}{\|\mathbf{w}^{\mathrm{H}}\mathbf{t}_{1T}\mathbf{t}_{1R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{s}_{T}\mathbf{s}_{R}^{\mathrm{H}}\boldsymbol{\Theta}^{\mathrm{H}}\mathbf{r}_{2T}\|^2} \\ \text { s.t. } &\left( 1 + \beta_T \right) \operatorname{tr}\left(\mathbf{w w}^{\mathrm{H}}\right) \leq P_t \text {, } \\ & \boldsymbol{\Theta}=\operatorname{diag}\left\{\theta_{1}, \cdots, \theta_{L}\right\}, \\ & \left|\theta_{i}\right|=1, \quad i \in\{1, \cdots, L\} . \\ \end{align} ?(P7)?w,Θmin??s.t.??∥wHt1T?t1RH?ΘHsT?sRH?ΘHr2T?∥2∥w∥2∥t1T?t1RH?ΘHsT?sRH?ΘHr2T?∥2?(1+βT?)tr(wwH)≤Pt?,?Θ=diag{θ1?,?,θL?},∣θi?∣=1,i∈{1,?,L}.??
其实这里的norm应该改成abs
w = P t 1 + β T \mathbf{w} = \sqrt{\frac{P_t}{1+\beta_T}} w=1+βT?Pt???