【算法与数据结构】62、LeetCode不同路径

发布时间:2024年01月12日

所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解

一、题目

在这里插入图片描述

二、解法

??思路分析:机器人只能向下或者向右移动,那么到达(i,j)位置的路径和(i-1,j)以及(i,j-1)有关。那么我们就得到的动态规划的表达式 d p [ i ] [ j ] = d p [ i ? 1 ] [ j ] + d p [ i ] [ j ? 1 ] dp[i][j]=dp[i-1][j]+dp[i][j-1] dp[i][j]=dp[i?1][j]+dp[i][j?1]。其中,因为到达第一行和第一列位置的路径只有一条,因此dp数组中第一行第一列的元素都为1。根据如上信息,我们写出如下代码。
??程序如下

class Solution {
public:
	int uniquePaths(int m, int n) {
		vector<vector<int>> dp(m, vector<int>(n, 1));
		for (int i = 1; i < m; i++) {
			for (int j = 1; j < n; j++) {
				dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
			}
		}
		return dp[m - 1][n - 1];
	}
};

复杂度分析:

  • 时间复杂度: O ( m ? n ) O(m*n) O(m?n)
  • 空间复杂度: O ( m ? n ) O(m*n) O(m?n)

三、完整代码

# include <iostream>
# include <vector>
using namespace std;

class Solution {
public:
	int uniquePaths(int m, int n) {
		vector<vector<int>> dp(m, vector<int>(n, 1));
		for (int i = 1; i < m; i++) {
			for (int j = 1; j < n; j++) {
				dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
			}
		}
		return dp[m - 1][n - 1];
	}
};

int main() {
	int m = 3, n = 2;
	Solution s1;
	int result = s1.uniquePaths(m, n);
	cout << result << endl;
	system("pause");
	return 0;
}

end

文章来源:https://blog.csdn.net/qq_45765437/article/details/135546235
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。