聚类是一种无监督学习任务,该算法基于数据的内部结构寻找观察样本的自然族群(即集群)。使用案例包括细分客户、新闻聚类、文章推荐等。
因为聚类是一种无监督学习(即数据没有标注),并且通常使用数据可视化评价结果。如果存在「正确的回答」(即在训练集中存在预标注的集群),那么分类算法可能更加合适。
依据算法原理,聚类算法可以分为基于划分的聚类算法(比如 K-means)、基于密度的聚类算法(比如DBSCAN)、基于层次的聚类算法(比如HC)和基于模型的聚类算法(比如HMM)。
K 均值聚类是一种通用目的的算法,聚类的度量基于样本点之间的几何距离(即在坐标平面中的距离)。集群是围绕在聚类中心的族群,而集群呈现出类球状并具有相似的大小。聚类算法是我们推荐给初学者的算法,因为该算法不仅十分简单,而且还足够灵活以面对大多数问题都能给出合理的结果。
K-means是基于样本集合划分的聚类算法,是一种无监督学习。
1967年,J. MacQueen 在论文《 Some methods for classification and analysis of multivariate observations》中把这种方法正式命名为 K-means。
https://www.cs.cmu.edu/~bhiksha/courses/mlsp.fall2010/class14/macqueen.pdf
优点:K 均值聚类是最流行的聚类算法,因为该算法足够快速、简单,并且如果你的预处理数据和特征工程十分有效,那么该聚类算法将拥有令人惊叹的灵活性。
缺点:该算法需要指定集群的数量,而 K 值的选择通常都不是那么容易确定的。另外,如果训练数据中的真实集群并不是类球状的,那么 K 均值聚类会得出一些比较差的集群。
K-means聚类算法的主要步骤:
第一步:初始化聚类中心;
第二步:给聚类中心分配样本 ;
第三步:移动聚类中心 ;
第四步:停止移动。
注意:K-means算法采用的是迭代的方法,得到局部最优解.
# -*- coding:utf-8 -*-
import numpy as np
from matplotlib import pyplot
class K_Means(object):
# k是分组数;tolerance‘中心点误差’;max_iter是迭代次数
def __init__(self, k=2, tolerance=0.0001, max_iter=300):
self.k_ = k
self.tolerance_ = tolerance
self.max_iter_ = max_iter
def fit(self, data):
self.centers_ = {}
for i in range(self.k_):
self.centers_[i] = data[i]
for i in range(self.max_iter_):
self.clf_ = {}
for i in range(self.k_):
self.clf_[i] = []
# print("质点:",self.centers_)
for feature in data:
# distances = [np.linalg.norm(feature-self.centers[center]) for center in self.centers]
distances = []
for center in self.centers_:
# 欧拉距离
# np.sqrt(np.sum((features-self.centers_[center])**2))
distances.append(np.linalg.norm(feature - self.centers_[center]))
classification = distances.index(min(distances))
self.clf_[classification].append(feature)
# print("分组情况:",self.clf_)
prev_centers = dict(self.centers_)
for c in self.clf_:
self.centers_[c] = np.average(self.clf_[c], axis=0)
# '中心点'是否在误差范围
optimized = True
for center in self.centers_:
org_centers = prev_centers[center]
cur_centers = self.centers_[center]
if np.sum((cur_centers - org_centers) / org_centers * 100.0) > self.tolerance_:
optimized = False
if optimized:
break
def predict(self, p_data):
distances = [np.linalg.norm(p_data - self.centers_[center]) for center in self.centers_]
index = distances.index(min(distances))
return index
if __name__ == '__main__':
x = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])
k_means = K_Means(k=2)
k_means.fit(x)
print(k_means.centers_)
for center in k_means.centers_:
pyplot.scatter(k_means.centers_[center][0], k_means.centers_[center][1], marker='*', s=150)
for cat in k_means.clf_:
for point in k_means.clf_[cat]:
pyplot.scatter(point[0], point[1], c=('r' if cat == 0 else 'b'))
predict = [[2, 1], [6, 9]]
for feature in predict:
cat = k_means.predict(predict)
pyplot.scatter(feature[0], feature[1], c=('r' if cat == 0 else 'b'), marker='x')
pyplot.show()
*是两组数据的”中心点”;x是预测点分组。
http://scikit-learn.org/stable/modules/clustering.html#k-means
# -*- coding:utf-8 -*-
import numpy as np
from matplotlib import pyplot
from sklearn.cluster import KMeans
if __name__ == '__main__':
x = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])
# 把上面数据点分为两组(非监督学习)
clf = KMeans(n_clusters=2)
clf.fit(x) # 分组
centers = clf.cluster_centers_ # 两组数据点的中心点
labels = clf.labels_ # 每个数据点所属分组
print(centers)
print(labels)
for i in range(len(labels)):
pyplot.scatter(x[i][0], x[i][1], c=('r' if labels[i] == 0 else 'b'))
pyplot.scatter(centers[:,0],centers[:,1],marker='*', s=100)
# 预测
predict = [[2,1], [6,9]]
label = clf.predict(predict)
for i in range(len(label)):
pyplot.scatter(predict[i][0], predict[i][1], c=('r' if label[i] == 0 else 'b'), marker='x')
pyplot.show()
# -*- coding:utf-8 -*-
import numpy as np
from sklearn.cluster import KMeans
from sklearn import preprocessing
import pandas as pd
# 加载数据
df = pd.read_excel('titanic.xls')
df.drop(['body', 'name', 'ticket'], 1, inplace=True)
df.fillna(0, inplace=True) # 把NaN替换为0
# 把字符串映射为数字,例如{female:1, male:0}
df_map = {}
cols = df.columns.values
for col in cols:
if df[col].dtype != np.int64 and df[col].dtype != np.float64:
temp = {}
x = 0
for ele in set(df[col].values.tolist()):
if ele not in temp:
temp[ele] = x
x += 1
df_map[df[col].name] = temp
df[col] = list(map(lambda val: temp[val], df[col]))
# 将每一列特征标准化为标准正太分布
x = np.array(df.drop(['survived'], 1).astype(float))
x = preprocessing.scale(x)
clf = KMeans(n_clusters=2)
clf.fit(x)
# 计算分组准确率
y = np.array(df['survived'])
correct = 0
for i in range(len(x)):
predict_data = np.array(x[i].astype(float))
predict_data = predict_data.reshape(-1, len(predict_data))
predict = clf.predict(predict_data)
if predict[0] == y[i]:
correct += 1
print(correct * 1.0 / len(x))
"""
===========================================================
A demo of K-Means clustering on the handwritten digits data
===========================================================
"""
# %%
# Load the dataset
# ----------------
#
# We will start by loading the `digits` dataset. This dataset contains
# handwritten digits from 0 to 9. In the context of clustering, one would like
# to group images such that the handwritten digits on the image are the same.
import numpy as np
from sklearn.datasets import load_digits
data, labels = load_digits(return_X_y=True)
(n_samples, n_features), n_digits = data.shape, np.unique(labels).size
print(f"# digits: {n_digits}; # samples: {n_samples}; # features {n_features}")
# %%
# Define our evaluation benchmark
# -------------------------------
#
# We will first our evaluation benchmark. During this benchmark, we intend to
# compare different initialization methods for KMeans. Our benchmark will:
#
# * create a pipeline which will scale the data using a
# :class:`~sklearn.preprocessing.StandardScaler`;
# * train and time the pipeline fitting;
# * measure the performance of the clustering obtained via different metrics.
from time import time
from sklearn import metrics
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
def bench_k_means(kmeans, name, data, labels):
"""Benchmark to evaluate the KMeans initialization methods.
Parameters
----------
kmeans : KMeans instance
A :class:`~sklearn.cluster.KMeans` instance with the initialization
already set.
name : str
Name given to the strategy. It will be used to show the results in a
table.
data : ndarray of shape (n_samples, n_features)
The data to cluster.
labels : ndarray of shape (n_samples,)
The labels used to compute the clustering metrics which requires some
supervision.
"""
t0 = time()
estimator = make_pipeline(StandardScaler(), kmeans).fit(data)
fit_time = time() - t0
results = [name, fit_time, estimator[-1].inertia_]
# Define the metrics which require only the true labels and estimator
# labels
clustering_metrics = [
metrics.homogeneity_score,
metrics.completeness_score,
metrics.v_measure_score,
metrics.adjusted_rand_score,
metrics.adjusted_mutual_info_score,
]
results += [m(labels, estimator[-1].labels_) for m in clustering_metrics]
# The silhouette score requires the full dataset
results += [
metrics.silhouette_score(
data,
estimator[-1].labels_,
metric="euclidean",
sample_size=300,
)
]
# Show the results
formatter_result = (
"{:9s}\t{:.3f}s\t{:.0f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}"
)
print(formatter_result.format(*results))
# %%
# Run the benchmark
# -----------------
#
# We will compare three approaches:
#
# * an initialization using `k-means++`. This method is stochastic and we will
# run the initialization 4 times;
# * a random initialization. This method is stochastic as well and we will run
# the initialization 4 times;
# * an initialization based on a :class:`~sklearn.decomposition.PCA`
# projection. Indeed, we will use the components of the
# :class:`~sklearn.decomposition.PCA` to initialize KMeans. This method is
# deterministic and a single initialization suffice.
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
print(82 * "_")
print("init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette")
kmeans = KMeans(init="k-means++", n_clusters=n_digits, n_init=4, random_state=0)
bench_k_means(kmeans=kmeans, name="k-means++", data=data, labels=labels)
kmeans = KMeans(init="random", n_clusters=n_digits, n_init=4, random_state=0)
bench_k_means(kmeans=kmeans, name="random", data=data, labels=labels)
pca = PCA(n_components=n_digits).fit(data)
kmeans = KMeans(init=pca.components_, n_clusters=n_digits, n_init=1)
bench_k_means(kmeans=kmeans, name="PCA-based", data=data, labels=labels)
print(82 * "_")
# %%
# Visualize the results on PCA-reduced data
# -----------------------------------------
#
# :class:`~sklearn.decomposition.PCA` allows to project the data from the
# original 64-dimensional space into a lower dimensional space. Subsequently,
# we can use :class:`~sklearn.decomposition.PCA` to project into a
# 2-dimensional space and plot the data and the clusters in this new space.
import matplotlib.pyplot as plt
reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init="k-means++", n_clusters=n_digits, n_init=4)
kmeans.fit(reduced_data)
# Step size of the mesh. Decrease to increase the quality of the VQ.
h = 0.02 # point in the mesh [x_min, x_max]x[y_min, y_max].
# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(
Z,
interpolation="nearest",
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect="auto",
origin="lower",
)
plt.plot(reduced_data[:, 0], reduced_data[:, 1], "k.", markersize=2)
# Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(
centroids[:, 0],
centroids[:, 1],
marker="x",
s=169,
linewidths=3,
color="w",
zorder=10,
)
plt.title(
"K-means clustering on the digits dataset (PCA-reduced data)\n"
"Centroids are marked with white cross"
)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()
import time
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from numpy import nonzero, array
from sklearn.cluster import KMeans
from sklearn.metrics import f1_score, accuracy_score, normalized_mutual_info_score, rand_score, adjusted_rand_score
from sklearn.preprocessing import LabelEncoder
from sklearn.decomposition import PCA
# 数据保存在.csv文件中
iris = pd.read_csv("datasets/data/Iris.csv", header=0) # 鸢尾花数据集 Iris class=3
# wine = pd.read_csv("datasets/data/wine.csv") # 葡萄酒数据集 Wine class=3
# seeds = pd.read_csv("datasets/data/seeds.csv") # 小麦种子数据集 seeds class=3
# wdbc = pd.read_csv("datasets/data/wdbc.csv") # 威斯康星州乳腺癌数据集 Breast Cancer Wisconsin (Diagnostic) class=2
# glass = pd.read_csv("datasets/data/glass.csv") # 玻璃辨识数据集 Glass Identification class=6
df = iris # 设置要读取的数据集
# print(df)
columns = list(df.columns) # 获取数据集的第一行,第一行通常为特征名,所以先取出
features = columns[:len(columns) - 1] # 数据集的特征名(去除了最后一列,因为最后一列存放的是标签,不是数据)
dataset = df[features] # 预处理之后的数据,去除掉了第一行的数据(因为其为特征名,如果数据第一行不是特征名,可跳过这一步)
attributes = len(df.columns) - 1 # 属性数量(数据集维度)
original_labels = list(df[columns[-1]]) # 原始标签
def initialize_centroids(data, k):
# 从数据集中随机选择k个点作为初始质心
centers = data[np.random.choice(data.shape[0], k, replace=False)]
return centers
def get_clusters(data, centroids):
# 计算数据点与质心之间的距离,并将数据点分配给最近的质心
distances = np.linalg.norm(data[:, np.newaxis] - centroids, axis=2)
cluster_labels = np.argmin(distances, axis=1)
return cluster_labels
def update_centroids(data, cluster_labels, k):
# 计算每个簇的新质心,即簇内数据点的均值
new_centroids = np.array([data[cluster_labels == i].mean(axis=0) for i in range(k)])
return new_centroids
def k_means(data, k, T, epsilon):
start = time.time() # 开始时间,计时
# 初始化质心
centroids = initialize_centroids(data, k)
t = 0
while t <= T:
# 分配簇
cluster_labels = get_clusters(data, centroids)
# 更新质心
new_centroids = update_centroids(data, cluster_labels, k)
# 检查收敛条件
if np.linalg.norm(new_centroids - centroids) < epsilon:
break
centroids = new_centroids
print("第", t, "次迭代")
t += 1
print("用时:{0}".format(time.time() - start))
return cluster_labels, centroids
# 计算聚类指标
def clustering_indicators(labels_true, labels_pred):
if type(labels_true[0]) != int:
labels_true = LabelEncoder().fit_transform(df[columns[len(columns) - 1]]) # 如果数据集的标签为文本类型,把文本标签转换为数字标签
f_measure = f1_score(labels_true, labels_pred, average='macro') # F值
accuracy = accuracy_score(labels_true, labels_pred) # ACC
normalized_mutual_information = normalized_mutual_info_score(labels_true, labels_pred) # NMI
rand_index = rand_score(labels_true, labels_pred) # RI
ARI = adjusted_rand_score(labels_true, labels_pred)
return f_measure, accuracy, normalized_mutual_information, rand_index, ARI
# 绘制聚类结果散点图
def draw_cluster(dataset, centers, labels):
center_array = array(centers)
if attributes > 2:
dataset = PCA(n_components=2).fit_transform(dataset) # 如果属性数量大于2,降维
center_array = PCA(n_components=2).fit_transform(center_array) # 如果属性数量大于2,降维
else:
dataset = array(dataset)
# 做散点图
label = array(labels)
plt.scatter(dataset[:, 0], dataset[:, 1], marker='o', c='black', s=7) # 原图
# plt.show()
colors = np.array(
["#FF0000", "#0000FF", "#00FF00", "#FFFF00", "#00FFFF", "#FF00FF", "#800000", "#008000", "#000080", "#808000",
"#800080", "#008080", "#444444", "#FFD700", "#008080"])
# 循换打印k个簇,每个簇使用不同的颜色
for i in range(k):
plt.scatter(dataset[nonzero(label == i), 0], dataset[nonzero(label == i), 1], c=colors[i], s=7, marker='o')
# plt.scatter(center_array[:, 0], center_array[:, 1], marker='x', color='m', s=30) # 聚类中心
plt.show()
if __name__ == "__main__":
k = 3 # 聚类簇数
T = 100 # 最大迭代数
n = len(dataset) # 样本数
epsilon = 1e-5
# 预测全部数据
# labels, centers = k_means(np.array(dataset), k, T, epsilon)
clf = KMeans(n_clusters=k, max_iter=T, tol=epsilon)
clf.fit(np.array(dataset)) # 分组
centers = clf.cluster_centers_ # 两组数据点的中心点
labels = clf.labels_ # 每个数据点所属分组
# print(labels)
F_measure, ACC, NMI, RI, ARI = clustering_indicators(original_labels, labels) # 计算聚类指标
print("F_measure:", F_measure, "ACC:", ACC, "NMI", NMI, "RI", RI, "ARI", ARI)
# print(membership)
# print(centers)
# print(dataset)
draw_cluster(dataset, centers, labels=labels)
https://www.nltk.org/api/nltk.cluster.kmeans.html
K-means 聚类器从 k 个任意选择的均值开始,然后分配 具有最接近均值的聚类的每个向量。然后,它会重新计算 每个簇的均值,作为簇中向量的质心。这 重复该过程,直到群集成员身份稳定下来。这是一个 爬坡算法,可能收敛到局部最大值。因此, 聚类通常以随机的初始均值重复,并且大多数 选择常见的输出均值。
def demo():
# example from figure 14.9, page 517, Manning and Schutze
import numpy
from nltk.cluster import KMeansClusterer, euclidean_distance
vectors = [numpy.array(f) for f in [[2, 1], [1, 3], [4, 7], [6, 7]]]
means = [[4, 3], [5, 5]]
clusterer = KMeansClusterer(2, euclidean_distance, initial_means=means)
clusters = clusterer.cluster(vectors, True, trace=True)
print("Clustered:", vectors)
print("As:", clusters)
print("Means:", clusterer.means())
print()
vectors = [numpy.array(f) for f in [[3, 3], [1, 2], [4, 2], [4, 0], [2, 3], [3, 1]]]
# test k-means using the euclidean distance metric, 2 means and repeat
# clustering 10 times with random seeds
clusterer = KMeansClusterer(2, euclidean_distance, repeats=10)
clusters = clusterer.cluster(vectors, True)
print("Clustered:", vectors)
print("As:", clusters)
print("Means:", clusterer.means())
print()
# classify a new vector
vector = numpy.array([3, 3])
print("classify(%s):" % vector, end=" ")
print(clusterer.classify(vector))
print()
if __name__ == "__main__":
demo()
如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;
╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地
//(ㄒoㄒ)//,就在评论处留言,作者继续改进;
o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;
(????)
感谢各位大佬童鞋们的支持!
( ′ ▽′ )ノ ( ′ ▽′)っ!!!