Residual network残差网络中的恒等连接是什么?

发布时间:2023年12月17日


一、残差网络是什么?

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

残差网络是一种深度神经网络体系结构,旨在解决深层网络训练时的梯度消失和梯度爆炸问题。它通过引入残差跳跃连接来允许网络跨层直接传递信息,从而使得网络更加容易训练且提高了网络性能。

在传统的神经网络中,输入数据通过一系列的层逐层传递,每个层都将数据进行线性变换和非线性变换。而在残差网络中,每个网络块再加上未经过变换的输入作为输入,称为“恒等连接(identity connection)”。这意味着输出可以直接添加到输入中,以产生残差。这个残差能够传递到后面的层中,使得网络更加容易优化和训练。

例如,假设我们有一个输入x需要经过两层变换(每层都采用ReLU激活函数),如下所示:

y = ReLU(W2 * ReLU(W1*x))

现在,我们在每个块中添加一个跳过连接,得到以下残差块的形式:

y = ReLU(W2 * (ReLU(W1*x) + x))

这里,(ReLU(W1*x) + x) 就是输入x和网络块的输出之和,意味着我们从前面的输出上“跳过”了一层。通过这样的跳跃连接,我们能够将信息直接跨越网络层级,防止梯度在一些深层神经元上消失,从而加快训练速度并提高特征提取能力。

文章来源:https://blog.csdn.net/qlkaicx/article/details/134965128
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。