旅行商问题(Traveling Salesman Problem, TSP)是组合优化中的经典问题。简单地说,一个旅行商需要访问N个城市,并返回到出发城市,问题是找到最短的可能路线,使得每个城市只被访问一次。由于TSP是一个NP-hard问题,找到其精确解决方案是非常计算密集型的,特别是对于大规模的城市集。因此,我们需要一种可以在合理的时间内得到近似解的方法。
LLM大模型相关文章
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
模拟退火算法(Simulated Annealing, SA)是一个非常受欢迎的随机搜索技术,用于求解优化问题。模拟退火是受固体退火过程启发的一种算法,通过不断比较当前解和新解来找到问题的近似解。
在本文中,我们将介绍如何使用模拟退火算法解决TSP问题,并提供Python代码的实现。
TSP问题描述的是以14个城市为例,假定14个城市的位置坐标如表所示,寻找一条最短的遍历14个城市的路径。
def distance(city1, city2):
"""计算两个城市之间的欧几里得距离"""
return np.sqrt((city1[0] - city2[0])**2 + (city1[1] - city2[1])**2)
def total_distance(tour, cities):
"""计算给定路线的总距离"""
n = len(tour)
return sum(distance(cities[tour[i]], cities[tour[(i+1) % n]]) for i in range(n))
# 初始解为城市的顺序
current_solution = list(range(len(cities)))
current_distance = total_distance(current_solution, cities)
best_solution = current_solution[:]
best_distance = current_distance
temperature = initial_temperature
# Metropolis准则
if delta_distance < 0 or random.random() < np.exp(-delta_distance / temperature):
current_solution = new_solution
current_distance = new_distance
if current_distance < best_distance:
best_solution = current_solution[:]
best_distance = current_distance
# 随机选择两个城市进行交换,得到新的解
i, j = random.sample(range(len(cities)), 2)
new_solution = current_solution[:]
new_solution[i], new_solution[j] = new_solution[j], new_solution[i]
new_distance = total_distance(new_solution, cities)
delta_distance = new_distance - current_distance
主函数
def simulated_annealing(cities, initial_temperature, cooling_rate, num_iterations_per_temperature):
"""模拟退火算法求解TSP问题"""
# 初始解为城市的顺序
current_solution = list(range(len(cities)))
current_distance = total_distance(current_solution, cities)
best_solution = current_solution[:]
best_distance = current_distance
temperature = initial_temperature
while temperature > 1e-3: # 设置一个最低温度
for _ in range(num_iterations_per_temperature):
# 随机选择两个城市进行交换,得到新的解
i, j = random.sample(range(len(cities)), 2)
new_solution = current_solution[:]
new_solution[i], new_solution[j] = new_solution[j], new_solution[i]
new_distance = total_distance(new_solution, cities)
delta_distance = new_distance - current_distance
# Metropolis准则
if delta_distance < 0 or random.random() < np.exp(-delta_distance / temperature):
current_solution = new_solution
current_distance = new_distance
if current_distance < best_distance:
best_solution = current_solution[:]
best_distance = current_distance
temperature *= cooling_rate # 降低温度
return best_solution, best_distance
cities = np.array([(16.47, 96.10),
(16.47, 94.44),
(20.09, 92.54),
(22.39, 93.37),
(25.23, 97.24),
(22.00, 96.05),
(20.47, 97.02),
(17.20, 96.29),
(16.30, 97.38),
(14.05, 98.12),
(16.53, 97.38),
(21.52, 95.59),
(19.41, 97.13),
(20.09, 92.55),])
initial_temperature = 1000
cooling_rate = 0.995
num_iterations_per_temperature = 1000
best_tour, best_distance = simulated_annealing(cities, initial_temperature, cooling_rate, num_iterations_per_temperature)
print("Best tour:", best_tour)
print("Best distance:", best_distance)
Best tour: [8, 9, 0, 1, 13, 2, 3, 4, 5, 11, 6, 12, 7, 10]
Best distance: 29.340520066994223
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案