这套题值得写一写,从C题开始就很有技巧
给定一个数组
a
1
.
.
.
.
.
a
n
a_1.....a_n
a1?.....an?
对于每个
a
i
a_i
ai?,找到其左边第一个比他小的位置
l
i
,
a
l
i
<
a
i
l_i,a_{l_i}<a_i
li?,ali??<ai?,找到其右边第一个比他小的位置
r
i
r_i
ri?,计算
m
a
x
(
(
r
i
?
l
i
?
1
)
?
a
i
)
max((r_i-l_i -1)*a_i)
max((ri??li??1)?ai?)
找左边第一个比他小的位置可以用单调栈,手推一下就可以看出来
栈顶维护当前的数,把前面比它大的数都出栈,因为后面的数再去扫描时已经没有必要维护前面大的数了
# -*- coding: utf-8 -*-
# @time : 2023/6/2 13:30
# @file : atcoder.py
# @software : PyCharm
import bisect
import copy
import sys
from itertools import permutations
from sortedcontainers import SortedList
from collections import defaultdict, Counter, deque
from functools import lru_cache, cmp_to_key
import heapq
import math
sys.setrecursionlimit(100010)
def main():
items = sys.version.split()
fp = open("in.txt") if items[0] == "3.10.6" else sys.stdin
n = int(fp.readline())
a = list(map(int, fp.readline().split()))
l = [0] * n
r = [0] * n
st = [-1]
for i in range(n):
while st[-1] >= 0 and a[st[-1]] >= a[i]:
st.pop()
l[i] = st[-1]
st.append(i)
st = [n]
for i in range(n - 1, -1, -1):
while st[-1] < n and a[st[-1]] >= a[i]:
st.pop()
r[i] = st[-1]
st.append(i)
ans = 0
for i in range(n):
t = (r[i] - l[i] - 1) * a[i]
ans = max(t, ans)
print(ans)
if __name__ == "__main__":
main()
dp,记录当前操作后为0的种类和操作后为1的种类
# -*- coding: utf-8 -*-
# @time : 2023/6/2 13:30
# @file : atcoder.py
# @software : PyCharm
import bisect
import copy
import sys
from itertools import permutations
from sortedcontainers import SortedList
from collections import defaultdict, Counter, deque
from functools import lru_cache, cmp_to_key
import heapq
import math
sys.setrecursionlimit(100010)
def main():
items = sys.version.split()
fp = open("in.txt") if items[0] == "3.10.6" else sys.stdin
n = int(fp.readline())
dp = [[0] * 2 for _ in range(n + 1)]
dp[0][0] = dp[0][1] = 1
for i in range(1, n + 1):
s = fp.readline().strip()
if s == "AND":
dp[i][1] = dp[i - 1][1]
dp[i][0] = dp[i - 1][1] + dp[i - 1][0] * 2
else:
dp[i][1] = 2 * dp[i - 1][1] + dp[i - 1][0]
dp[i][0] = dp[i - 1][0]
ans = dp[n][1]
print(ans)
if __name__ == "__main__":
main()
如果对坐标变换熟悉,那么很简单:
操作1:
(
x
,
y
)
:
(
y
,
?
x
)
(x,y):(y,-x)
(x,y):(y,?x)
[
0
?
1
1
0
]
×
[
x
y
]
=
[
y
?
x
]
\left[ \begin{array}{ccc} 0 & -1\\ 1 & 0 \end{array} \right ] \times \left[ \begin{array}{ccc} x\\ y \end{array} \right ] = \left[ \begin{array}{ccc} y\\ -x \end{array} \right ]
[01??10?]×[xy?]=[y?x?]
操作2:
[
0
1
?
1
0
]
×
[
x
y
]
=
[
?
y
x
]
\left[ \begin{array}{ccc} 0 & 1\\ -1 & 0 \end{array} \right ] \times \left[ \begin{array}{ccc} x\\ y \end{array} \right ] = \left[ \begin{array}{ccc} -y\\ x \end{array} \right ]
[0?1?10?]×[xy?]=[?yx?]
操作3:
[
?
1
0
0
1
]
×
[
x
y
]
+
[
2
p
0
]
=
[
2
p
?
x
y
]
\left[ \begin{array}{ccc} -1 & 0\\ 0 & 1 \end{array} \right ] \times \left[ \begin{array}{ccc} x\\ y \end{array} \right ] + \left[ \begin{array}{ccc} 2p\\ 0 \end{array} \right ] = \left[ \begin{array}{ccc} 2p-x\\ y \end{array} \right ]
[?10?01?]×[xy?]+[2p0?]=[2p?xy?]
操作4:
[
1
0
0
?
1
]
×
[
x
y
]
+
[
0
2
p
]
=
[
x
2
p
?
y
]
\left[ \begin{array}{ccc} 1 & 0\\ 0 & -1 \end{array} \right ] \times \left[ \begin{array}{ccc} x\\ y \end{array} \right ] + \left[ \begin{array}{ccc} 0\\ 2p \end{array} \right ] = \left[ \begin{array}{ccc} x\\ 2p-y \end{array} \right ]
[10?0?1?]×[xy?]+[02p?]=[x2p?y?]
每一步都左乘即可。需要维护的是
A
x
+
d
Ax+d
Ax+d中两个矩阵
A
,
d
A,d
A,d
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <string>
#include <cstring>
#include <climits>
#include <cstdlib>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <algorithm>
#define LT(x) (x * 2)
#define RT(x) (x * 2 + 1)
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef pair<LL, LL> pll;
typedef vector<int> vi;
int n, m, q;
struct Query {
int step, x, i;
};
struct Mat {
LL a[2][2] = {0};
int r, c;
};
Mat raw[200020];
vector<pii> trans;
Query query[200020];
pll ans[200020];
bool cmp(Query& lhs, Query& rhs) {
return lhs.step < rhs.step;
}
Mat mul(Mat& a, Mat& b) {
Mat ret;
ret.r = a.r, ret.c = b.c;
for (int i = 0; i < a.r; ++i) {
for (int j = 0; j < b.c; ++j) {
for (int k = 0; k < a.c; ++k) {
ret.a[i][j] += a.a[i][k] * b.a[k][j];
}
}
}
return ret;
}
int main() {
//freopen("in.txt", "r", stdin);
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
LL x, y;
scanf("%lld%lld", &x, &y);
Mat mat;
mat.r = 2, mat.c = 1;
mat.a[0][0] = x, mat.a[1][0] = y;
raw[i] = mat;
}
Mat m0;
m0.r = m0.c = 2;
m0.a[0][0] = 0, m0.a[0][1] = 1, m0.a[1][0] = -1, m0.a[1][1] = 0;
Mat m1 = m0;
m1.a[0][0] = 0, m1.a[0][1] = -1, m1.a[1][0] = 1, m1.a[1][1] = 0;
Mat m2 = m0;
m2.a[0][0] = -1, m2.a[0][1] = 0, m2.a[1][0] = 0, m2.a[1][1] = 1;
Mat m3 = m0;
m3.a[0][0] = 1, m3.a[0][1] = 0, m3.a[1][0] = 0, m3.a[1][1] = -1;
scanf("%d", &m);
for (int i = 0; i < m; ++i) {
int op;
scanf("%d", &op);
op--;
if (op == 0 || op == 1) {
trans.push_back({ op, 0 });
}
else {
int p;
scanf("%d", &p);
trans.push_back({ op, p });
}
}
Mat cur;
cur.r = cur.c = 2;
cur.a[0][0] = 1, cur.a[1][1] = 1;
Mat d0;
d0.r = 2, d0.c = 1;
scanf("%d", &q);
for (int i = 0; i < q; ++i) {
int p, x;
scanf("%d%d", &p, &x);
x--;
query[i].step = p, query[i].x = x, query[i].i = i;
}
sort(query, query + q, cmp);
int i = 0, j = 0;
while (i <= m && j < q) {
int step = query[j].step;
int ri = query[j].i;
int x = query[j].x;
if (i == step) {
Mat nm = mul(cur, raw[x]);
ans[ri] = { nm.a[0][0] + d0.a[0][0], nm.a[1][0] + d0.a[1][0] };
j += 1;
}
else {
if (trans[i].first == 0) {
cur = mul(m0, cur);
d0 = mul(m0, d0);
}
else if (trans[i].first == 1) {
cur = mul(m1, cur);
d0 = mul(m1, d0);
}
else if (trans[i].first == 2) {
LL p = trans[i].second;
cur = mul(m2, cur);
d0 = mul(m2, d0);
d0.a[0][0] += p * 2;
}
else {
LL p = trans[i].second;
cur = mul(m3, cur);
d0 = mul(m3, d0);
d0.a[1][0] += p * 2;
}
i += 1;
}
}
for (int i = 0; i < q; ++i) {
printf("%lld %lld\n", ans[i].first, ans[i].second);
}
return 0;
}
本题的思路和强化学习中贝尔曼方程非常类似
当递推式中存在未知数,可以将未知数设为一个需要解的元,最后列方程求解。
具体到此题中,
f
(
i
)
=
0
,
i
>
=
n
f
(
i
)
=
f
(
0
)
,
i
∈
A
f
(
i
)
=
(
f
(
i
+
1
)
+
f
(
i
+
2
)
.
.
.
f
(
i
+
m
)
)
/
m
+
1
,
i
?
A
f(i)=0,i>=n \\ f(i)=f(0), i \in A \\ f(i)=(f(i+1)+f(i+2)...f(i+m))/m +1, i\notin A
f(i)=0,i>=nf(i)=f(0),i∈Af(i)=(f(i+1)+f(i+2)...f(i+m))/m+1,i∈/A
由于只存在一个未知数,可以将其单独列出求系数
即
f
(
i
)
=
a
i
f
(
0
)
+
b
i
f(i)=a_if(0)+b_i
f(i)=ai?f(0)+bi?
对两者进行dp递推
最后
f
(
0
)
=
a
0
f
(
0
)
+
b
0
f(0)=a_0f(0)+b_0
f(0)=a0?f(0)+b0?
求解
f
(
0
)
f(0)
f(0)
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <string>
#include <cstring>
#include <climits>
#include <cstdlib>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <algorithm>
#define LT(x) (x * 2)
#define RT(x) (x * 2 + 1)
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef pair<LL, LL> pll;
typedef vector<int> vi;
int n, m, k;
double a[400040], b[400040], sa[400040], sb[400040];
set<int> ks;
int main() {
//freopen("in.txt", "r", stdin);
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < k; ++i) {
int t;
scanf("%d", &t);
ks.insert(t);
}
for (int i = n - 1; i >= 0; --i) {
if (ks.count(i)) {
a[i] = 1.0;
b[i] = 0.0;
}
else {
a[i] = (sa[i + 1] - sa[i + m + 1]) / m;
b[i] = (sb[i + 1] - sb[i + m + 1]) / m + 1;
}
sa[i] = sa[i + 1] + a[i];
sb[i] = sb[i + 1] + b[i];
}
if (1 - a[0] < 1e-7) {
printf("-1\n");
}
else {
printf("%.9f\n", b[0] / (1 - a[0]));
}
return 0;
}