Flink定制化功能开发,demo代码

发布时间:2024年01月13日

前言:

? ? ? ?这是一个Flink自定义开发的基础教学。本文将通过flink的DataStream模块API,以kafka为数据源,构建一个基础测试环境;包含一个kafka生产者线程工具,一个自定义FilterFunction算子,一个自定义MapFunction算子,用一个flink任务的代码逻辑,将实时读kafka并多层处理串起来;让读者体会通过Flink构建自定义函数的技巧。

一、Flink的开发模块分析

Flink提供四个基础模块:核心SDK开发API分别是处理实时计算的DataStream和处理离线计算的DataSet;基于这两个SDK,在其上包装了TableAPI开发模块的SDK;在Table API之上,定义了高度抽象可用SQL开发任务的FlinkSQL。在核心开发API之下,还有基础API的接口,可用于对时间,状态,算子等最细粒度的特性对象做操作,如包装自定义算子的ProcessWindowFunction和ProcessFunction等基础函数以及内置的对象状态StateTtlConfig;

FLINK开发API关系结构如下:

二、定制化开发Demo演示

2.1 场景介绍

Flink实时任务的的通用技术架构是消息队列中间件+Flink任务:

将数据采集到Kafka或pulser这类队列中间件的Topic,然后使用Flink内置的kafkaSource,监控Topic的数据情况,做实时处理。

  1. 这里提供一个kafka的生产者线程,可以自定义构建需要的数据和上传时间,用于控制写入kafka的数据源;
  2. 重写两个DataStream的基础算子:FilterFunction和MapFunction,用于让读者体会,如何对FLINK函数的重新包装,后续更基础的函数原理一样;我这里用String数据对象做处理,减少对象转换的SDK引入,通常要基于业务做数据polo的加工,这个自己处理,将对象换成业务对象;
  3. 然后使用Flink将整个业务串起来,从kafka读数据,经过两层处理,最终输出需要的结果;

2.2 本地demo演示

2.2.1 pom文件

这里以flink1.14.6+scala1.12版本为例:

2.2.2 kafka生产者线程方法

package org.example.util;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.*;

/**
 * 向kafka生产数据
 *
 * @author i7杨
 * @date 2024/01/12 13:02:29
 */

public class KafkaProducerUtil extends Thread {

    private String topic;

    public KafkaProducerUtil(String topic) {
        super();
        this.topic = topic;
    }

    private static Producer<String, String> createProducer() {
        // 通过Properties类设置Producer的属性
        Properties properties = new Properties();
//        测试环境 kafka 配置
        properties.put("bootstrap.servers", "ip2:9092,ip:9092,ip3:9092");
        properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        return new KafkaProducer<String, String>(properties);
    }

    @Override
    public void run() {
        Producer<String, String> producer = createProducer();
        Random random = new Random();
        Random random2 = new Random();

        while (true) {
            int nums = random.nextInt(10);
            int nums2 = random.nextInt(50);
//            double nums2 = random2.nextDouble();

            String time = new Date().getTime() / 1000 + 5 + "";
            String type = "pv";
            try {
                if (nums2 % 2 == 0) {
                    type = "pv";
                } else {
                    type = "uv";

                }
//                String info = "{\"user\":" + nums + ",\"item\":" + nums * 10 + ",\"category\":" + nums2 + ",\"pv\":" + nums2 * 5 + ",\"ts\":\"" + time + "\"}";
                String info = nums + "=" + nums2;

                System.out.println("message : " + info);
                producer.send(new ProducerRecord<String, String>(this.topic, info));
                
            } catch (Exception e) {
                e.printStackTrace();
            }
            System.out.println("=========数据已经写入==========");
            
            try {
                sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
    
    public static void main(String[] args) {
        new KafkaProducerUtil("test01").run();
    }
    
    public static void sendMessage(String topic, String message) {
        Producer<String, String> producer = createProducer();
        producer.send(new ProducerRecord<String, String>(topic, message));
    }
    
}
2.2.3 自定义基础函数

这里自定义了filter和map两个算子函数,测试逻辑按照数据结构变化:

自定义FilterFunction函数算子:阈值小于40的过滤掉

package org.example.funtion;

import org.apache.flink.api.common.functions.FilterFunction;

/**
 * FilterFunction重构
 *
 * @author i7杨
 * @date 2024/01/12 13:02:29
 */

public class InfoFilterFunction implements FilterFunction<String> {

    private double threshold;

    public InfoFilterFunction(double threshold) {
        this.threshold = threshold;
    }

    @Override
    public boolean filter(String value) throws Exception {

        if (value.split("=").length == 2)
            // 阈值过滤
            return Double.valueOf(value.split("=")[1]) > threshold;
        else return false;
    }
}

自定义MapFunction函数:后缀为2的,添加上特殊信息

package org.example.funtion;

import org.apache.flink.api.common.functions.MapFunction;

public class ActionMapFunction implements MapFunction<String, String> {

    @Override
    public String map(String value) throws Exception {
        System.out.println("value:" + value);
        if (value.endsWith("2"))
            return value.concat(":Special processing information");
        else return value;
    }
}

2.2.4 flink任务代码

任务逻辑:使用kafka工具产生数据,然后监控kafka的topic,讲几个函数串起来,输出结果;

package org.example.service;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.example.funtion.ActionMapFunction;
import org.example.funtion.InfoFilterFunction;

import java.util.*;

public class FlinkTestDemo {
    public static void main(String[] args) throws Exception {

        // 设置执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Kafka 配置
        Properties kafkaProps = new Properties();
        kafkaProps.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "ip1:9092,ip2:9092,ip3:9092");
        kafkaProps.setProperty(ConsumerConfig.GROUP_ID_CONFIG, "flink-consumer-group");
        kafkaProps.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        kafkaProps.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        kafkaProps.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

        // 创建 Kafka 消费者
        FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(
                "test01",// Kafka 主题名称
                new SimpleStringSchema(),
                kafkaProps);

        // 从 Kafka 中读取数据流
        DataStream<String> kafkaStream = env.addSource(kafkaConsumer);
        env.disableOperatorChaining();

        kafkaStream
                .filter(new InfoFilterFunction(40))
                .map(new ActionMapFunction())
                .print("阈值大于40以上的message=");

        // 执行任务
        env.execute("This is a testing task");
    }


}

运行结果:

文章来源:https://blog.csdn.net/weixin_42049123/article/details/135561586
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。