2023春季李宏毅机器学习笔记01 :正确认识 ChatGPT

发布时间:2024年01月02日

资料

  • 课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php
  • Github:https://github.com/Fafa-DL/Lhy_Machine_Learning
  • B站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid=2014800

一、对Chatgpt的误解

常见误解

  1. 给出的回答不是已经准备好的(罐头回应×)
  2. 不是网络上搜索得出的答案(甚至有很多幻想出来的答案)

原理
在这里插入图片描述

二、预训练

ChatGPT:chat Generative Pre-trained Transformer
关键技术:

  • Pre-train(预训练)=Self supervised Leaarning(自督导式学习)
  • Foundation Model:基石模型
  • Fintune:微调
    在这里插入图片描述
    在这里插入图片描述

三、ChatGPT带来的研究问题

  1. 如何精准提出需求?
    目前使用的方法:Prompting
    创新点:有没有比人工尝试更加系统性的方法?
  2. 如何更正错误?
    目前没有较好的解决方法
    创新点:新研究题目Neural Editing
  3. 甄别AI生成的内容
  4. 泄露秘密、隐私信息
    创新点:新的研究题目:Machine Unlearning

四、文字冒险游戏

在这里插入图片描述

五、ChatGPT是怎么练成的?

ChatGPT的“兄弟”:InstructGPT,论文地址:https://arxiv.org/abs/2203.02155

ChatGPT学习四阶段

  1. 学习文字接龙
    不需要人工标注,在网络上收集语句,对输入句子(字)后面可以接的字进行概率统计,每次输出高概率的字(每一次输出都不同)

  2. 人类老师引导文字接龙方向
    人来思考问题,并人工提供答案(不需要很多,目的只是为了让GPT知道人们希望得到的答案)

  3. 模仿人类老师的喜好
    训练Teacher Model让希望输出的答案的“分数”大于其他输出

  4. 用增强式学习向模拟老师学习

六、延伸学习

分类
回归

文章来源:https://blog.csdn.net/Julialove102123/article/details/135347844
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。