labelme标注的json文件数据转成coco数据集格式(可处理目标框和实例分割)

发布时间:2023年12月24日

这里主要是搬运一下能找到的 labelme标注的json文件数据转成coco数据集格式(可处理目标框和实例分割)的代码,以供需要时参考和提供相关帮助。

1、官方labelme实现

如下是labelme官方网址,提供了源代码,以及相关使用方法,包括数据集格式转换,要仔细了解的可以细看。

网址:https://github.com/wkentaro/labelme
在这里插入图片描述

其中,官网也提供了打包成exe可执行文件的方法。 如果自己使用后有其他可改进的想法,可以尝试看源码修改增加相关功能, 然后打包成exe可执行文件,使用会更方便。
在这里插入图片描述
可以看到相关工作的介绍,里面提供了把实例分割标注文件转成COCO格式的功能。网址:https://github.com/wkentaro/labelme/tree/main/examples/instance_segmentation
在这里插入图片描述
进入网址如下:
在这里插入图片描述

labelme提供的 标注文件json 转成coco数据集格式的代码,可以包含水平框和实例分割的目标轮廓,代码如下:

#!/usr/bin/env python

import argparse
import collections
import datetime
import glob
import json
import os
import os.path as osp
import sys
import uuid

import imgviz
import numpy as np

import labelme

try:
    import pycocotools.mask
except ImportError:
    print("Please install pycocotools:\n\n    pip install pycocotools\n")
    sys.exit(1)


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument("input_dir", help="input annotated directory")
    parser.add_argument("output_dir", help="output dataset directory")
    parser.add_argument("--labels", help="labels file", required=True)
    parser.add_argument(
        "--noviz", help="no visualization", action="store_true"
    )
    args = parser.parse_args()

    if osp.exists(args.output_dir):
        print("Output directory already exists:", args.output_dir)
        sys.exit(1)
    os.makedirs(args.output_dir)
    os.makedirs(osp.join(args.output_dir, "JPEGImages"))
    if not args.noviz:
        os.makedirs(osp.join(args.output_dir, "Visualization"))
    print("Creating dataset:", args.output_dir)

    now = datetime.datetime.now()

    data = dict(
        info=dict(
            description=None,
            url=None,
            version=None,
            year=now.year,
            contributor=None,
            date_created=now.strftime("%Y-%m-%d %H:%M:%S.%f"),
        ),
        licenses=[dict(url=None, id=0, name=None,)],
        images=[
            # license, url, file_name, height, width, date_captured, id
        ],
        type="instances",
        annotations=[
            # segmentation, area, iscrowd, image_id, bbox, category_id, id
        ],
        categories=[
            # supercategory, id, name
        ],
    )

    class_name_to_id = {}
    for i, line in enumerate(open(args.labels).readlines()):
        class_id = i - 1  # starts with -1
        class_name = line.strip()
        if class_id == -1:
            assert class_name == "__ignore__"
            continue
        class_name_to_id[class_name] = class_id
        data["categories"].append(
            dict(supercategory=None, id=class_id, name=class_name,)
        )

    out_ann_file = osp.join(args.output_dir, "annotations.json")
    label_files = glob.glob(osp.join(args.input_dir, "*.json"))
    for image_id, filename in enumerate(label_files):
        print("Generating dataset from:", filename)

        label_file = labelme.LabelFile(filename=filename)

        base = osp.splitext(osp.basename(filename))[0]
        out_img_file = osp.join(args.output_dir, "JPEGImages", base + ".jpg")

        img = labelme.utils.img_data_to_arr(label_file.imageData)
        imgviz.io.imsave(out_img_file, img)
        data["images"].append(
            dict(
                license=0,
                url=None,
                file_name=osp.relpath(out_img_file, osp.dirname(out_ann_file)),
                height=img.shape[0],
                width=img.shape[1],
                date_captured=None,
                id=image_id,
            )
        )

        masks = {}  # for area
        segmentations = collections.defaultdict(list)  # for segmentation
        for shape in label_file.shapes:
            points = shape["points"]
            label = shape["label"]
            group_id = shape.get("group_id")
            shape_type = shape.get("shape_type", "polygon")
            mask = labelme.utils.shape_to_mask(
                img.shape[:2], points, shape_type
            )

            if group_id is None:
                group_id = uuid.uuid1()

            instance = (label, group_id)

            if instance in masks:
                masks[instance] = masks[instance] | mask
            else:
                masks[instance] = mask

            if shape_type == "rectangle":
                (x1, y1), (x2, y2) = points
                x1, x2 = sorted([x1, x2])
                y1, y2 = sorted([y1, y2])
                points = [x1, y1, x2, y1, x2, y2, x1, y2]
            else:
                points = np.asarray(points).flatten().tolist()

            segmentations[instance].append(points)
        segmentations = dict(segmentations)

        for instance, mask in masks.items():
            cls_name, group_id = instance
            if cls_name not in class_name_to_id:
                continue
            cls_id = class_name_to_id[cls_name]

            mask = np.asfortranarray(mask.astype(np.uint8))
            mask = pycocotools.mask.encode(mask)
            area = float(pycocotools.mask.area(mask))
            bbox = pycocotools.mask.toBbox(mask).flatten().tolist()

            data["annotations"].append(
                dict(
                    id=len(data["annotations"]),
                    image_id=image_id,
                    category_id=cls_id,
                    segmentation=segmentations[instance],
                    area=area,
                    bbox=bbox,
                    iscrowd=0,
                )
            )

        if not args.noviz:
            labels, captions, masks = zip(
                *[
                    (class_name_to_id[cnm], cnm, msk)
                    for (cnm, gid), msk in masks.items()
                    if cnm in class_name_to_id
                ]
            )
            viz = imgviz.instances2rgb(
                image=img,
                labels=labels,
                masks=masks,
                captions=captions,
                font_size=15,
                line_width=2,
            )
            out_viz_file = osp.join(
                args.output_dir, "Visualization", base + ".jpg"
            )
            imgviz.io.imsave(out_viz_file, viz)

    with open(out_ann_file, "w") as f:
        json.dump(data, f)


if __name__ == "__main__":
    main()

代码执行需要导入相关库,缺少相关库自行下载安装。然后是看代码执行命令:

python ./labelme2coco.py --input_dir xxx --output_dir xxx --labels labels.txt

其中:
--input_dir 表示输入路径,包含标注的 json和图片
--output_dir 表示输出路径,用以保存图片和转化的coco文件
--labels 表示标签类别文件

生成文件夹内容:

 It generates:
   - data_dataset_coco/JPEGImages
   - data_dataset_coco/annotations.json

2、其他代码实现

代码也很好理解,就是把相关功能集成到一起

import os
import argparse
import json

from labelme import utils
import numpy as np
import glob
import PIL.Image


class labelme2coco(object):
    def __init__(self, labelme_json=[], save_json_path="./coco.json"):
        """
        :param labelme_json: the list of all labelme json file paths
        :param save_json_path: the path to save new json
        """
        self.labelme_json = labelme_json
        self.save_json_path = save_json_path
        self.images = []
        self.categories = []
        self.annotations = []
        self.label = []
        self.annID = 1
        self.height = 0
        self.width = 0

        self.save_json()

    def data_transfer(self):
        for num, json_file in enumerate(self.labelme_json):
            with open(json_file, "r") as fp:
                data = json.load(fp)
                self.images.append(self.image(data, num))
                for shapes in data["shapes"]:
                    label = shapes["label"].split("_")
                    if label not in self.label:
                        self.label.append(label)
                    points = shapes["points"]
                    self.annotations.append(self.annotation(points, label, num))
                    self.annID += 1

        # Sort all text labels so they are in the same order across data splits.
        self.label.sort()
        for label in self.label:
            self.categories.append(self.category(label))
        for annotation in self.annotations:
            annotation["category_id"] = self.getcatid(annotation["category_id"])

    def image(self, data, num):
        image = {}
        img = utils.img_b64_to_arr(data["imageData"])
        height, width = img.shape[:2]
        img = None
        image["height"] = height
        image["width"] = width
        image["id"] = num
        image["file_name"] = data["imagePath"].split("/")[-1]

        self.height = height
        self.width = width

        return image

    def category(self, label):
        category = {}
        category["supercategory"] = label[0]
        category["id"] = len(self.categories)
        category["name"] = label[0]
        return category

    def annotation(self, points, label, num):
        annotation = {}
        contour = np.array(points)
        x = contour[:, 0]
        y = contour[:, 1]
        area = 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
        annotation["segmentation"] = [list(np.asarray(points).flatten())]
        annotation["iscrowd"] = 0
        annotation["area"] = area
        annotation["image_id"] = num

        annotation["bbox"] = list(map(float, self.getbbox(points)))

        annotation["category_id"] = label[0]  # self.getcatid(label)
        annotation["id"] = self.annID
        return annotation

    def getcatid(self, label):
        for category in self.categories:
            if label == category["name"]:
                return category["id"]
        print("label: {} not in categories: {}.".format(label, self.categories))
        exit()
        return -1

    def getbbox(self, points):
        polygons = points
        mask = self.polygons_to_mask([self.height, self.width], polygons)
        return self.mask2box(mask)

    def mask2box(self, mask):

        index = np.argwhere(mask == 1)
        rows = index[:, 0]
        clos = index[:, 1]

        left_top_r = np.min(rows)  # y
        left_top_c = np.min(clos)  # x

        right_bottom_r = np.max(rows)
        right_bottom_c = np.max(clos)

        return [
            left_top_c,
            left_top_r,
            right_bottom_c - left_top_c,
            right_bottom_r - left_top_r,
        ]

    def polygons_to_mask(self, img_shape, polygons):
        mask = np.zeros(img_shape, dtype=np.uint8)
        mask = PIL.Image.fromarray(mask)
        xy = list(map(tuple, polygons))
        PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
        mask = np.array(mask, dtype=bool)
        return mask

    def data2coco(self):
        data_coco = {}
        data_coco["images"] = self.images
        data_coco["categories"] = self.categories
        data_coco["annotations"] = self.annotations
        return data_coco

    def save_json(self):
        print("save coco json")
        self.data_transfer()
        self.data_coco = self.data2coco()

        print(self.save_json_path)
        os.makedirs(
            os.path.dirname(os.path.abspath(self.save_json_path)), exist_ok=True
        )
        json.dump(self.data_coco, open(self.save_json_path, "w"), indent=4)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(
        description="labelme annotation to coco data json file."
    )
    parser.add_argument(
        "labelme_images",
        help="Directory to labelme images and annotation json files.",
        type=str,
    )
    parser.add_argument(
        "--output", help="Output json file path.", default="trainval.json"
    )
    args = parser.parse_args()
    labelme_json = glob.glob(os.path.join(args.labelme_images, "*.json"))
    labelme2coco(labelme_json, args.output)

代码执行命令:

python labelme2coco.py labelme_images

其中,labelme_images 表示 放标注文件json和图片的文件夹路径,结果默认在当前路径下生成 trainval.json文件

文章来源:https://blog.csdn.net/qq_44442727/article/details/135179437
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。