本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
.
食用方法
如何表达刚体在空间中的位置与姿态
姿态参数如何表达?不同表达方式直接的转换关系?
旋转矩阵?转换矩阵?有什么意义和性质?转置代表什么?
如何表示连续变换?——与RPY有关
齐次坐标的意义——简化公式?
务必自己推导全部公式,并理解每个符号的含义
对于固定坐标系下同一点/向量
,在不同坐标系
{
A
}
,
{
B
}
\left\{ A \right\} ,\left\{ B \right\}
{A},{B}下进行表达,存在如下转换关系:
R
?
V
e
c
t
o
r
A
=
[
Q
B
A
]
R
?
V
e
c
t
o
r
B
\vec{R}_{\mathrm{Vector}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{Vector}}^{B}
RVectorA?=[QBA?]RVectorB?
R
?
P
A
=
[
Q
B
A
]
R
?
P
B
+
R
?
B
A
\vec{R}_{\mathrm{P}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{P}}^{B}+\vec{R}_{\mathrm{B}}^{A}
RPA?=[QBA?]RPB?+RBA?
对于固定坐标系下同一线/面
,在不同坐标系
{
A
}
,
{
B
}
\left\{ A \right\} ,\left\{ B \right\}
{A},{B}下进行表达,存在如下转换关系:
R
?
P
A
+
λ
R
?
V
e
c
t
o
r
A
=
[
Q
B
A
]
R
?
P
B
+
R
?
B
A
+
λ
[
Q
B
A
]
R
?
V
e
c
t
o
r
B
=
[
Q
B
A
]
(
R
?
P
B
+
λ
R
?
V
e
c
t
o
r
B
)
+
R
?
B
A
\vec{R}_{\mathrm{P}}^{A}+\lambda \vec{R}_{\mathrm{Vector}}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{P}}^{B}+\vec{R}_{\mathrm{B}}^{A}+\lambda \left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{Vector}}^{B}=\left[ Q_{\mathrm{B}}^{A} \right] \left( \vec{R}_{\mathrm{P}}^{B}+\lambda \vec{R}_{\mathrm{Vector}}^{B} \right) +\vec{R}_{\mathrm{B}}^{A}
RPA?+λRVectorA?=[QBA?]RPB?+RBA?+λ[QBA?]RVectorB?=[QBA?](RPB?+λRVectorB?)+RBA?
R
?
P
A
+
λ
1
R
?
V
e
c
t
o
r
1
A
+
λ
2
R
?
V
e
c
t
o
r
2
A
=
[
Q
B
A
]
R
?
P
B
+
R
?
B
A
+
λ
1
[
Q
B
A
]
R
?
V
e
c
t
o
r
1
B
+
λ
2
[
Q
B
A
]
R
?
V
e
c
t
o
r
2
B
=
[
Q
B
A
]
(
R
?
P
B
+
λ
1
R
?
V
e
c
t
o
r
1
B
+
λ
2
R
?
V
e
c
t
o
r
2
B
)
+
R
?
B
A
\vec{R}_{\mathrm{P}}^{A}+\lambda _1\vec{R}_{\mathrm{Vector}_1}^{A}+\lambda _2\vec{R}_{\mathrm{Vector}_2}^{A}=\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{P}}^{B}+\vec{R}_{\mathrm{B}}^{A}+\lambda _1\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{Vector}_1}^{B}+\lambda _2\left[ Q_{\mathrm{B}}^{A} \right] \vec{R}_{\mathrm{Vector}_2}^{B}=\left[ Q_{\mathrm{B}}^{A} \right] \left( \vec{R}_{\mathrm{P}}^{B}+\lambda _1\vec{R}_{\mathrm{Vector}_1}^{B}+\lambda _2\vec{R}_{\mathrm{Vector}_2}^{B} \right) +\vec{R}_{\mathrm{B}}^{A}
RPA?+λ1?RVector1?A?+λ2?RVector2?A?=[QBA?]RPB?+RBA?+λ1?[QBA?]RVector1?B?+λ2?[QBA?]RVector2?B?=[QBA?](RPB?+λ1?RVector1?B?+λ2?RVector2?B?)+RBA?
球坐标
系姿态角
(
θ
,
?
)
\left( \theta ,\phi \right)
(θ,?), 为:法矢量
n
?
\vec{n}
n
已知平面上存在点
P
1
(
x
1
,
y
1
,
z
1
)
,
P
2
(
x
2
,
y
2
,
z
2
)
,
P
3
(
x
3
,
y
3
,
z
3
)
P_1\left( x_1,y_1,z_1 \right) ,P_2\left( x_2,y_2,z_2 \right) ,P_3\left( x_3,y_3,z_3 \right)
P1?(x1?,y1?,z1?),P2?(x2?,y2?,z2?),P3?(x3?,y3?,z3?), 则其法矢量
n
?
\vec{n}
n为:
n
?
=
P
1
P
2
?
×
P
1
P
3
?
=
∣
i
?
j
?
k
?
x
2
?
x
1
y
2
?
y
1
z
2
?
z
1
x
3
?
x
1
y
3
?
y
1
z
3
?
z
1
∣
=
a
i
?
+
b
j
?
+
c
k
?
;
n
?
(
a
,
b
,
c
)
{
a
=
(
y
2
?
y
1
)
(
z
3
?
z
1
)
?
(
y
3
?
y
1
)
(
z
2
?
z
1
)
b
=
(
z
2
?
z
1
)
(
x
3
?
x
1
)
?
(
z
3
?
z
1
)
(
x
2
?
x
1
)
c
=
(
x
2
?
x
1
)
(
y
3
?
y
1
)
?
(
x
3
?
x
1
)
(
y
2
?
y
1
)
??
\vec{n}=\overrightharpoon{P_1P_2}\times \overrightharpoon{P_1P_3}=\left| \begin{matrix} \vec{i}& \vec{j}& \vec{k}\\ x_2-x_1& y_2-y_1& z_2-z_1\\ x_3-x_1& y_3-y_1& z_3-z_1\\ \end{matrix} \right|=a\vec{i}+b\vec{j}+c\vec{k};\vec{n}\left( a,b,c \right) \\ \begin{cases} a=\left( y_2-y_1 \right) \left( z_3-z_1 \right) -\left( y_3-y_1 \right) \left( z_2-z_1 \right)\\ b=\left( z_2-z_1 \right) \left( x_3-x_1 \right) -\left( z_3-z_1 \right) \left( x_2-x_1 \right)\\ c=\left( x_2-x_1 \right) \left( y_3-y_1 \right) -\left( x_3-x_1 \right) \left( y_2-y_1 \right) \,\,\\ \end{cases}
n=P1?P2??×P1?P3??=
?ix2??x1?x3??x1??j?y2??y1?y3??y1??kz2??z1?z3??z1??
?=ai+bj?+ck;n(a,b,c)?
?
??a=(y2??y1?)(z3??z1?)?(y3??y1?)(z2??z1?)b=(z2??z1?)(x3??x1?)?(z3??z1?)(x2??x1?)c=(x2??x1?)(y3??y1?)?(x3??x1?)(y2??y1?)?
平面的姿态参数
已知平面上存在点
P
1
(
x
1
,
y
1
,
z
1
)
,
P
2
(
x
2
,
y
2
,
z
2
)
,
P
3
(
x
3
,
y
3
,
z
3
)
P_1\left( x_1,y_1,z_1 \right) ,P_2\left( x_2,y_2,z_2 \right) ,P_3\left( x_3,y_3,z_3 \right)
P1?(x1?,y1?,z1?),P2?(x2?,y2?,z2?),P3?(x3?,y3?,z3?), 令
i
?
M
=
P
1
P
2
?
∣
P
1
P
2
?
∣
=
(
x
2
?
x
1
)
i
?
+
(
y
2
?
y
1
)
j
?
+
(
z
2
?
z
1
)
k
?
(
x
2
?
x
1
)
2
+
(
y
2
?
y
1
)
2
+
(
z
2
?
z
1
)
2
\vec{i}^M=\frac{\overrightharpoon{P_1P_2}}{\left| \overrightharpoon{P_1P_2} \right|}=\frac{\left( x_2-x_1 \right) \vec{i}+\left( y_2-y_1 \right) \vec{j}+\left( z_2-z_1 \right) \vec{k}}{\sqrt{\left( x_2-x_1 \right) ^2+\left( y_2-y_1 \right) ^2+\left( z_2-z_1 \right) ^2}}
iM=
?P1?P2??
?P1?P2???=(x2??x1?)2+(y2??y1?)2+(z2??z1?)2?(x2??x1?)i+(y2??y1?)j?+(z2??z1?)k?,
k
?
M
=
a
i
?
F
+
b
j
?
F
+
c
k
?
F
a
2
+
b
2
+
c
2
,
{
a
=
(
y
2
?
y
1
)
(
z
3
?
z
1
)
?
(
y
3
?
y
1
)
(
z
2
?
z
1
)
b
=
(
z
2
?
z
1
)
(
x
3
?
x
1
)
?
(
z
3
?
z
1
)
(
x
2
?
x
1
)
c
=
(
x
2
?
x
1
)
(
y
3
?
y
1
)
?
(
x
3
?
x
1
)
(
y
2
?
y
1
)
??
\vec{k}^M=\frac{a\vec{i}^F+b\vec{j}^F+c\vec{k}^F}{\sqrt{a^2+b^2+c^2}},\begin{cases} a=\left( y_2-y_1 \right) \left( z_3-z_1 \right) -\left( y_3-y_1 \right) \left( z_2-z_1 \right)\\ b=\left( z_2-z_1 \right) \left( x_3-x_1 \right) -\left( z_3-z_1 \right) \left( x_2-x_1 \right)\\ c=\left( x_2-x_1 \right) \left( y_3-y_1 \right) -\left( x_3-x_1 \right) \left( y_2-y_1 \right) \,\,\\ \end{cases}
kM=a2+b2+c2?aiF+bj?F+ckF?,?
?
??a=(y2??y1?)(z3??z1?)?(y3??y1?)(z2??z1?)b=(z2??z1?)(x3??x1?)?(z3??z1?)(x2??x1?)c=(x2??x1?)(y3??y1?)?(x3??x1?)(y2??y1?)?, 根据笛卡尔坐标系的基矢量转换关系:
j
?
M
=
k
?
M
×
i
?
M
\vec{j}^M=\vec{k}^M\times \vec{i}^M
j?M=kM×iM
可得:
[
i
?
M
j
?
M
k
?
M
]
=
[
Q
F
M
]
[
i
?
F
j
?
F
k
?
F
]
;
[
Q
M
F
]
=
[
Q
F
M
]
T
=
[
q
11
q
12
q
13
q
21
q
22
q
23
q
31
q
32
q
33
]
\left[ \begin{array}{c} \vec{i}^M\\ \vec{j}^M\\ \vec{k}^M\\ \end{array} \right] =\left[ Q_{\mathrm{F}}^{M} \right] \left[ \begin{array}{c} \vec{i}^F\\ \vec{j}^F\\ \vec{k}^F\\ \end{array} \right] ;\left[ Q_{\mathrm{M}}^{F} \right] =\left[ Q_{\mathrm{F}}^{M} \right] ^{\mathrm{T}}=\left[ \begin{matrix} q_{11}& q_{12}& q_{13}\\ q_{21}& q_{22}& q_{23}\\ q_{31}& q_{32}& q_{33}\\ \end{matrix} \right]
?iMj?MkM?
?=[QFM?]
?iFj?FkF?
?;[QMF?]=[QFM?]T=
?q11?q21?q31??q12?q22?q32??q13?q23?q33??
?
将该矩阵内的元素带入上述小节中对应的转换关系,即可得到对应表达下的姿态参数。