面试题,手写soft_nms

发布时间:2023年12月19日

目录

有原理步骤:

加注释版:

soft_nms的优点


有原理步骤:

soft-nms详解_笔记大全_设计学院

Soft-nms的实现过程可以分为几个步骤:

1. 输入预测框

输入神经网络预测输出的所有框,每个框有四个坐标和一个类别得分。

2. 对于每个框计算其权重

权重可以使用三种不同的函数:max、linear和Gaussian。

3. 重复以下步骤,直到不再有框被删除

(1)选出最高得分的框,令其权重为1,与第一个框进行交换。

(2)计算当前框与剩余框的重叠率。

(3)根据重叠率和选定的函数计算权重。

(4)根据权重更新每个框的得分。

(5)剔除得分小于设定阈值的框。

4. 输出筛选后的结果

代码:

def soft_nms(dets, sigma=0.5, Nt=0.3, threshold=0.001, method=1):
    """
    PyTorch implementation of SoftNMS algorithm.
    # Arguments
        dets:        detections, size[N,5], format[x1,y1,x2,y2,score]
        sigma:       variance of Gaussian function, scalar
        Nt:          threshold for box overlap, scalar
        threshold:   score threshold, scalar
        method:      0=Max, 1=Linear, 2=Gaussian
    # Returns
        dets:        detections after SoftNMS, size[K,5]
    """

    # Indexes concatenate detection boxes with the score
    N = dets.shape[0]
    indexes = np.array([np.arange(N)])
    dets = np.concatenate((dets, indexes.T), axis=1)

    for i in range(N):
        # intermediate parameters for later parameters exchange
        si = dets[i, 4]
        xi = dets[i, :4]
        area_i = (xi[2] - xi[0] + 1) * (xi[3] - xi[1] + 1)

        if method == 1:  # Linear
            weight = np.ones((N - i))
            weight[0] = si
        else:  # Gaussian
            # Compute Gaussian weight coefficients
            xx = np.arange(i, N).astype(np.float32)
            if method == 2:
                sigma = 0.5
            ii = np.ones((xx.shape[0], 1)) * i
            # print(sigma)
            # print((xx - ii).shape)
            gauss = np.exp(-1.0 * ((xx - ii) ** 2) / (2 * sigma * sigma))

            if method == 2:
                weight = gauss
            else:
                weight = np.zeros((N - i))
                weight[0] = 1.0
                weight[1:] = gauss / np.sum(gauss)

        # Sort boxes by score
        idx = np.arange(i, N)
        idx_max = np.argmax(dets[idx, 4])
        idx_max += i

        # Swap boxes and scores
        dets[i, 4], dets[idx_max, 4] = dets[idx_max, 4], dets[i, 4]
        dets[i, :4], dets[idx_max, :4] = dets[idx_max, :4], dets[i, :4]
        dets[i, 5], dets[idx_max, 5] = dets[idx_max, 5], dets[i, 5]

        # Compute overlap ratios
        xx1 = np.maximum(dets[i, 0], dets[idx, 0])
        yy1 = np.maximum(dets[i, 1], dets[idx, 1])
        xx2 = np.minimum(dets[i, 2], dets[idx, 2])
        yy2 = np.minimum(dets[i, 3], dets[idx, 3])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h

        # Update weights
        if method == 0:  # Max
            weight[idx_max - i + 1:] = np.where(inter > Nt, 0.0, 1.0)
        else:  # Linear / Gaussian
            weight_matrix = np.zeros((weight.shape[0], weight.shape[0]))
            weight_matrix[0, :] = weight
            weight_matrix[1:, :] = np.diag(weight[1:])
            iou = inter / (area_i + dets[idx, 4] * (1 - inter))
            weight[idx - i + 1] = np.matmul(weight_matrix, (1.0 - iou).reshape(-1, 1)).reshape(-1)
            weight[idx_max - i + 1:] = np.where(iou > Nt, 0.0, weight[idx_max - i + 1:])

        # Apply weight
        dets[idx, 4] = dets[idx, 4] * weight

        # Weigh small scores
        suppress_small = np.where(dets[idx, 4] < threshold)[0]
        dets[suppress_small + i, 4] = 0.0

    # remove boxes lower than threshold
    idx_keep = np.where(dets[:, 4] > 0)[0]
    dets = dets[idx_keep]

    return dets[:, :5]


?

加注释版:

soft_nms的优点

1,解决了物体挨得很近导致的漏检问题
2,需要增加的超参数很少,只增加了一个sigma,阈值nms本来也有,iou是算出来的
3,计算复杂度相对于nms没有增加,都是O(n^2),n是bboxes的数量。


import numpy as np

# 定义一个nms函数
def soft_nms(dets, thresh=0.3, sigma=0.5): # score大于thresh的才能存留下来,当设定的thresh过低,存留下来的框就很多,所以要根据实际情况调参
    '''
    input:
        dets: dets是(n,5)的ndarray,第0维度的每个元素代码一个框:[x1, y1, x2, y2, score] 
        thresh: float
        sigma: flaot
    output:
        index
    '''

    x1 = dets[:, 0] # dets:(n,5)  x1:(n,)  dets是ndarray, x1是ndarray
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4] # scores是ndarray


    # 每一个候选框的面积
    areas = (x2 - x1 + 1) * (y2 - y1 + 1) # areas:(n,)

    # order是按照score降序排序的
    order = scores.argsort()[::-1] # order:(n,) 降序下标 order是ndarray


    keep = []
    while order.size > 0:
        i = order[0] # i 是当下分数最高的框的下标
        # print(i)
        keep.append(i)
        # 计算当前概率最大矩形框与其他矩形框的相交框的坐标,会用到numpy的broadcast机制,得到的是向量

        # 当order只有一个值的时候,order[1]会报错说index out of range,而order[1:]会是[],不报错,[]也可以作为x1的索引,x1[[]]为[]
   
        xx1 = np.maximum(x1[i], x1[order[1:]]) # xx1:(n-1,)的ndarray x1[i]:numpy_64浮点数一个,x1[order[1:]]是个ndarray,可以是空的ndarray,如果是空ndarray那么xx1为空ndarray,如果非空,那么x1[order[1:]]有多少个元素,xx1就是有多少个元素的ndarray。x1[]是不是ndarray看中括号内的是不是ndarray,看中括号内的是不是ndarray看中括号内的order[]的中括号内有没有冒号,有冒号的是ndarray,没有的是一个数。
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])
        

        # 计算相交框的面积,注意矩形框不相交时w或h算出来会是负数,用0代替
        w = np.maximum(0.0, xx2 - xx1 + 1) # xx2-xx1是(n-1,)的ndarray,w是(n-1,)的ndarray, n会逐渐减小至1
        # 当xx2和xx1是空的,那w是空的
        h = np.maximum(0.0, yy2 - yy1 + 1)

        inter = w * h # inter是(n,)的ndarray
        # 当w和h是空的,inter是空的

        # 计算重叠度IOU:重叠面积/(面积1+面积2-重叠面积)
        eps = np.finfo(areas.dtype).eps # 除法考虑分母为0的情况,np.finfo(dtype).eps,np.finfo(dtype)是个类,它封装了机器极限浮点类型的数,比如eps,episilon的缩写,表示小正数。
        ovr = inter / np.maximum(eps, areas[i] + areas[order[1:]] - inter) # n-1   #一旦(面积1+面积2-重叠面积)为0,就用eps进行替换
        # 当inter为空,areas[i]无论inter空不空都是有值的,那么ovr也为空

        # 更新分数
        weight = np.exp(-ovr*ovr/sigma)
        scores[order[1:]] *= weight

        # 更新order
        score_order = scores[order[1:]].argsort()[::-1] + 1
        order = order[score_order]

        keep_ids = np.where(scores[order]>thresh)[0]

        order = order[keep_ids]


    return keep


import numpy as np
import cv2

# 读入图片,录入原始人框([x1, y1, x2, y2, score])
image = cv2.imread('w.jpg')

boxes = np.array([[5,	52,	171,	270, 0.9999],
[13,	1,	179,	268, 0.9998],
[20,	7,	176,	262, 0.8998],
[7,	5,	169,	272, 0.9687],
[3,	43,	162,	256, 0.9786],
[10,	56,	167,	266, 0.8988]])


# 将框绘制在图像上
image_for_nms_box = image.copy()
for box in boxes:
    x1, y1, x2, y2, score = int(box[0]), int(box[1]), int(box[2]), int(box[3]), box[4] # x:col y:row
    image_for_nms_box = cv2.rectangle(image_for_nms_box, (x1, y1), (x2, y2), (0,255,0), 2)
cv2.imwrite("w_all.jpg", image_for_nms_box)
cv2.imshow('w_all', image_for_nms_box)

# 使用soft_nms对框进行筛选
keep = soft_nms(boxes)
soft_nms_boxs = boxes[keep]

# 将筛选过后的框绘制在图像上
image_for_nms_box = image.copy()
for box in soft_nms_boxs:
    x1, y1, x2, y2, score = int(box[0]), int(box[1]), int(box[2]), int(box[3]), box[4]
    image_for_nms_box = cv2.rectangle(image_for_nms_box, (x1, y1), (x2, y2), (0,255,0), 2)
# Syntax: cv2.imwrite(filename, image)
cv2.imwrite("w_soft_nms.jpg", image_for_nms_box)
cv2.imshow('w_soft_nms', image_for_nms_box)

cv2.waitKey()
cv2.destroyAllWindows()


文章来源:https://blog.csdn.net/jacke121/article/details/135073678
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。