递归的难点在于:找到可以递归的点 为什么很多人觉得递归一看就会,一写就废。 或者说是自己写无法写出来,关键就是你对递归理解的深不深。
对于此题: 递归的点怎么找?从拿到题的第一时间开始,思路如下:
1.怎么判断一棵树是不是对称二叉树?
答案:如果所给根节点,为空,那么是对称。如果不为空的话,当他的左子树与右子树对称时,他对称
2.那么怎么知道左子树与右子树对不对称呢?在这我直接叫为左树和右树
答案:如果左树的左孩子与右树的右孩子对称,左树的右孩子与右树的左孩子对称,那么这个左树和右树就对称。
仔细读这句话,是不是有点绕?怎么感觉有一个功能A我想实现,但我去实现A的时候又要用到A实现后的功能呢?
当你思考到这里的时候,递归点已经出现了: 递归点:我在尝试判断左树与右树对称的条件时,发现其跟两树的孩子的对称情况有关系。
想到这里,你不必有太多疑问,上手去按思路写代码,函数A(左树,右树)功能是返回是否对称
def 函数A(左树,右树): 左树节点值等于右树节点值 且 函数A(左树的左子树,右树的右子树),函数A(左树的右子树,右树的左子树)均为真 才返回真
实现完毕
写着写着,你就发现你写出来了。
👨?🏫 参考题解
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root)
{
return isSame(root.left, root.right);
}
private boolean isSame(TreeNode l, TreeNode r)
{
if (l == null || r == null)// 只要 l 和 r 中有一个 null 的,则说明不对称;l 和 r 都为空 即递归出口
return l == r;
return l.val == r.val && isSame(l.left, r.right) && isSame(l.right, r.left);
}
}
class Solution {
public boolean isSymmetric(TreeNode root) {
if(root==null || (root.left==null && root.right==null)) {
return true;
}
//用队列保存节点
LinkedList<TreeNode> queue = new LinkedList<TreeNode>();
//将根节点的左右孩子放到队列中
queue.add(root.left);
queue.add(root.right);
while(queue.size()>0) {
//从队列中取出两个节点,再比较这两个节点
TreeNode left = queue.removeFirst();
TreeNode right = queue.removeFirst();
//如果两个节点都为空就继续循环,两者有一个为空就返回false
if(left==null && right==null) {
continue;
}
if(left==null || right==null) {
return false;
}
if(left.val!=right.val) {
return false;
}
//将左节点的左孩子, 右节点的右孩子放入队列
queue.add(left.left);
queue.add(right.right);
//将左节点的右孩子,右节点的左孩子放入队列
queue.add(left.right);
queue.add(right.left);
}
return true;
}
}