我们在既往的文章《R语言绘制复杂抽样设计数据cox回归生存曲线(Kaplan-Meier)》中介绍了怎么使用jskm包的svykm函数绘制复杂抽样设计数据cox回归生存曲线(Kaplan-Meier),今天来视频操作一下
超详细的R语言svykm函数绘制复杂抽样设计数据cox回归生存曲线(Kaplan-Meier)
代码
library(jskm)
library(survey)
#公众号回复:胆管炎数据,可以获得数据
pbc<-read.csv("E:/r/test/pbc.csv",sep=',',header=TRUE)
# age:年龄,trt:治疗方案:1D-青霉烯,2安慰剂,edema:水肿,
# status: 结局变量0/1/2表示审查、移植、死亡。
pbc$randomized <- with(pbc, !is.na(trt) & trt>0)
biasmodel <- glm(randomized~age*edema,data=pbc)
pbc$randprob <- fitted(biasmodel)
#生成预测值randprob后我们就可以正式分析了,我们先生成一个调查数据
dpbc <- svydesign(id=~1, prob=~randprob, strata=~edema, data=subset(pbc,randomized))
s1 <- svykm(Surv(time,status>0)~sex, design=dpbc,se=T)
#绘图
svyjskm(s1)
#更改X轴,Y轴标签和标题
svyjskm(s1,xlabs = "时间",ylabs = "生存率",main = "时间与生存率关系图")
#对图例进行修改
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",ystratalabs=c("男","女"))
#对X轴的范围进行限制,对Y轴也是一样的
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),xlims=c(0,3000))
#把Y轴改成以百分比显示
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),surv.scale="percent")
#更改显示的时间轴点数,默认是6个点
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700)
#在图中生成P值
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T)
#调整文中P值的位置和字体的大小
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,pval.coord=c(1000,0.4),pval.size=8)
#添加Log-rank进P值后面
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T)
#调整图例位置
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T,legendposition=c(0.6,0.8))
#不显示图例
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T,legendposition=c(0.6,0.8),legend=F)
#更换色彩风格,默认是Set1
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T,linecols="Set2")
#dashed设置虚线,好像只能设置一条
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T,linecols="Set2",dashed=T)
#显示累积发生率函数
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T,linecols="Set2",cumhaz=T)
#调用ggpubr::ggarrange函数来形成表格,给了我不少启发
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T,linecols="Set2",table=T)
#修改表格下面的副标题名字
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=,
linecols="Set2",table=T,label.nrisk="生存人数")
#设置Numbers at risk字体大小,默认是10
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T,
linecols="Set2",table=T,label.nrisk="生存人数",size.label.nrisk=12)
#给曲线加上百分比显示
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T,
linecols="Set2",table=T,label.nrisk="生存人数",size.label.nrisk=12,showpercent = T)
#cut.landmark是设置一个新的地标
svyjskm(s1,xlabs = "时间",ylabs = "生存率",ystrataname = "性别",
ystratalabs=c("男","女"),timeby=700,pval=T,
pval.coord=c(1000,0.4),pval.testname=T,
linecols="Set2",table=T,label.nrisk="生存人数",size.label.nrisk=12,showpercent = T,cut.landmark=2100)