?博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
??座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
1 无人机航迹规划问题的数学模型
建立三维航迹规划问题的数学模型时, 不但考虑无人机基本约束, 还考虑复杂的飞行环境, 包括山体地形和雷暴威胁区。
1.1 无人机基本约束
规划的无人机三维航迹, 通常需要满足一些基本约束, 包括最大转弯角、最大爬升角或下滑角、最小航迹段长度、最低和最高飞行高度, 以及最大航迹长度等约束。其中, 最大转弯角约束, 是指无人机只能在水平面内小于或等于指定的最大转弯角内转弯;最大爬升角或下滑角约束, 是指无人机只能在垂直平面内小于或等于指定的最大爬升角或下滑角内爬升或下滑;最小航迹段长度约束, 要求无人机改变飞行姿态之前, 按目前的航迹方向飞行的最短航程;最低和最高飞行高度约束, 要求无人机在指定的飞行高度区间飞行;最大航迹长度约束, 是指无人机的航迹长度小于或等于指定的阈值。
记q (x, y, z, θ, ψ) 为无人机的飞行位置与姿态, 其中, (x, y, z) 为无人机的位置, θ为无人机的水平转弯角, ψ为无人机的竖直爬升角或下滑角, 进而建立上述基本约束的数学表达式。
1.2 飞行环境障碍物和威胁区建模
在飞行环境中, 高耸的山体近似采用圆锥体等效表示, 用以e为底的自然指数图形生成, 那么, 山体地形可以通过多个位置不同的圆锥体叠加而成。若将参考海拔基准高度设置为xOy平面, 记 (x, y, z) 为山体地形中的点, 那么
式中:N为山体个数;xk0和yk0为第k座山体中心对称轴的横坐标和纵坐标;hk为第k座山体的最大高度;xki和yki为第k座山体的横向斜度和纵向斜度。
在飞行环境中, 山体附近通常存在雷暴等极端气象, 本文视为飞行威胁区, 并通过球体近似等效表示, 且记第k座山体附近飞行威胁区的球心坐标为 (xks0, yks0, zks0) , 半径为rk。
1.3 目标函数及航迹表示
在本文中, 执行任务的某型无人机, 其航迹规划的目标函数是生成一条由起始点到目标点的无碰撞可行航迹。采用q (x, y, z, θ, ψ) 表示无人机在飞行空域中某特定位置的特定姿态, 那么 (x, y, z) 则表示无人机所在航迹点, θ表示无人机的水平转弯角, ψ表示无人机的竖直爬升角或下滑角。采用r (q) 表示由起始点qinitial到目标点qgoal的无碰撞可行航迹, 那么航迹规划的过程可以写成如下形式:
2 哈里斯鹰算法
哈里斯鹰优化算法(Harris Hawks Optimization,HHO)是Heidari等于2019年提出的一种新型群智能算法,该算法源于哈里斯鹰(又名栗翅鹰)捕食时的群体协作行为。整个寻优过程包括探索、探索与开发转换和开发三个阶段,具有原理简单、控制参数少、全局搜索能力出色等特点,但同时也存在收敛速度慢、寻优精度低、易陷入局部最优等缺点。
2.1 探索阶段
在这一阶段中,哈里斯鹰所有种群个体处于等待状态,仔细检查和监控搜索空间[lb,ub]以发现猎物,它根据两种策略在随机的地方寻找猎物,选代时以概率q进行位置更新;
2.2 转换阶段
HHO算法可以从探索转移到开发- 然后,在不同的剥削行为之间的变化 基于猎物逃跑的能量。被猎物的能量 在逃跑行为过程中显著减少。
2.3开发阶段
在这个阶段,哈里斯的鹰通过攻击在前一阶段检测到的预期猎物来执行突袭。然而,猎物经常试图逃离危险的境地。因此,在实际情况中会出现不同的追逐风格。根据猎物的逃跑行为和哈里斯鹰的追逐策略,在HHO中提出了四种可能的策略来模拟攻击阶段。猎物总是试图逃离威胁情况。假设r是猎物的机会在突然突袭之前成功逃脱(r < 0.5)或未成功逃脱(r > 0.5)。无论猎物做什么,老鹰都会进行硬或软围攻以捕捉猎物。这意味着它们会根据猎物所保留的能量,从不同方向或软或硬地包围猎物。在实际情况下,老鹰会越来越接近目标猎物,以增加他们通过突然突袭合作杀死兔子的机会。几分钟后,逃跑的猎物会失去越来越多的能量;然后,老鹰队加强了围攻过程,毫不费力地抓住了筋疲力尽的猎物。为了对该策略进行建模并使HHO在软围攻和硬围攻过程之间切换,使用了E参数。在这方面,当E>0.5时,发生软围攻,当|E) <0.5时,发生硬围攻。
%% 三维地图-无人机寻路
% 3D map - aircraft pathfinding
%% 这是使用原始算法的直接求解结果,添加专用于本问题的更新方式可以进一步提高精度
% This is the direct result of using the original algorithm,
% adding some specific update methods to this problem can further improve the accuracy
clc;
clear;
close all;
warning off
%% 载入数据
data.S=[1,950,12]; %起点位置
data.E=[950,1,1]; %终点点位置
data.Obstacle=xlsread(‘data.xls’);
data.numObstacles=length(data.Obstacle(:,1));
data.mapSize=[1000,1000,20]; %10m 地图尺寸
data.unit=[50,50,1]; %地图精度
data.S0=ceil(data.S./data.unit);
data.E0=ceil(data.E./data.unit);
data.mapSize0=data.mapSize./data.unit;
data.map=zeros(data.mapSize0);
figure
plot3(data.S(:,1),data.S(:,2),data.S(:,3),‘o’,‘LineWidth’,1,…
‘MarkerEdgeColor’,‘g’,…
‘MarkerFaceColor’,‘g’,…
‘MarkerSize’,8)
hold on
plot3(data.E(:,1),data.E(:,2),data.E(:,3),‘h’,‘LineWidth’,1,…
‘MarkerEdgeColor’,‘g’,…
‘MarkerFaceColor’,‘g’,…
‘MarkerSize’,8)
for i=1:data.numObstacles
x=1+data.Obstacle(i,1);
y=1+data.Obstacle(i,2);
z=1+data.Obstacle(i,3);
long=data.Obstacle(i,4);
wide=data.Obstacle(i,5);
pretty=data.Obstacle(i,6);
[V,F] = DrawCuboid(long, wide, pretty, x,y,z);
x0=ceil(x/data.unit(1));
y0=ceil(y/data.unit(2));
z0=ceil(z/data.unit(3));
long0=ceil(long/data.unit(1));
wide0=ceil(wide/data.unit(2));
pretty0=ceil(pretty/data.unit(3));
data.map(x0:x0+long0,y0:y0+wide0,z0:z0+pretty0)=1;
end
legend(‘起点’,‘终点’)
title(‘三维地形地图’)
grid on
axis equal
%%
% index=find(data.map==1);
% [p1,p2,p3] = ind2sub(size(data.map), index);
% figure
% plot3(data.S0(:,1),data.S0(:,2),data.S0(:,3),‘o’,‘LineWidth’,1,…
% ‘MarkerEdgeColor’,‘g’,…
% ‘MarkerFaceColor’,‘g’,…
% ‘MarkerSize’,8)
% hold on
% plot3(data.E0(:,1),data.E0(:,2),data.E0(:,3),‘h’,‘LineWidth’,1,…
% ‘MarkerEdgeColor’,‘g’,…
% ‘MarkerFaceColor’,‘g’,…
% ‘MarkerSize’,8)
% plot3(p1,p2,p3,‘.’,‘LineWidth’,1,…
% ‘MarkerEdgeColor’,‘k’,…
% ‘MarkerFaceColor’,‘g’,…
% ‘MarkerSize’,10)
% legend(‘起点’,‘终点’)
% title(‘三维地形地图’)
% grid on
% axis equal
% xlabel(‘x(km)’)
% ylabel(‘y(km)’)
% zlabel(‘z(km)’)
%% 生成可移动方向
temp=[1,0,-1];
direction=[];
for i=1:3
for j=1:3
for k=1:3
direction=[direction;temp(i),temp(j),temp(k)];
end
end
end
position=find(direction(:,1)==0 & direction(:,2)==0 & direction(:,3)==0);
direction(position,:)=[];
data.direction=direction;
%% 算法参数设置 Parameters
% 基本参数
numAgent=20; %种群个体数 size of population,可自行修改
Max_iter=20; %最大迭代次数 maximum number of interation,可自行修改
lb=0;%下限,可自行修改
ub=1;%上限,可自行修改
dim=prod(data.mapSize0); % 优化变量个数
fobj=@(x) aimFcn(x,data);%目标函数,用以优化
%% 使用优化算法求解
Optimal_results{2,index}=recording;%迭代曲线
Optimal_results{3,index}=bestY;%最佳函数值
Optimal_results{4,index}=bestX; %最佳变量值
Optimal_results{5,index}=result; %优化结果
Optimal_results{6,index}=toc; %运行时间
index = index +1;
1 matlab版本
2014a
2 参考文献
[1]田疆,李二超.用于无人机三维航迹规划改进连接型快速扩展随机树算法[J].航空工程进展. 2018,9(04)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合