imgaug库指南(19):从入门到精通的【图像增强】之旅

发布时间:2024年01月13日

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(11):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性高斯噪声(AdditiveGaussianNoise方法)
imgaug库指南(12):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性拉普拉斯噪声(AdditiveLaplaceNoise方法)
imgaug库指南(13):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 加性泊松噪声(AdditivePoissonNoise方法)
imgaug库指南(14):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(Multiply方法)
imgaug库指南(15):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 乘法运算(MultiplyElementwise方法)
imgaug库指南(16):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Cutout方法
imgaug库指南(17):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— Dropout方法
imgaug库指南(18):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— CoarseDropout方法

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— Dropout2D方法


Dropout2D方法

功能介绍

iaa.Dropout2Dimgaug库中一个数据增强方法,可用于从图像中随机删除通道

语法


import imgaug.augmenters as iaa
aug = iaa.Dropout2d(p=0.1, nb_keep_channels=1)
  • p: 定义为图像中任何通道被丢弃的概率(即一旦确认某通道被丢弃,则该通道所有像素值设置为零)

    • p为浮点数,则图像中任何通道被丢弃的概率为p
    • p为元组(a, b),则图像中任何通道被丢弃的概率为从区间[a, b]中采样的随机数;
    • p为列表,则图像中任何通道被丢弃的概率为从列表中随机采样的浮点数;
  • nb_keep_channels: 在所有图像中保持不变的最小通道数。例如,nb_keep_channels=1意味着即使p=1.0,每个图像中至少有一个通道不会被丢弃。nb_keep_channels=0意味着允许删除所有通道。

示例代码

  1. 使用不同的p
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)


# 创建数据增强器
aug1 = iaa.Dropout2d(p=0.2, nb_keep_channels=1)
aug2 = iaa.Dropout2d(p=0.6, nb_keep_channels=1)
aug3 = iaa.Dropout2d(p=1.0, nb_keep_channels=1)



# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)

# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图1 原图及数据增强结果可视化

可以从图1看到:数据增强后的新图像都出现通道被丢弃的情况,即使丢弃的概率p=1.0,由于我们设置了nb_keep_channels=1,图像仍然存在一个通道未被丢弃(见右下图)。

  1. 使用不同的 nb_keep_channels
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt

# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)


# 创建数据增强器
aug1 = iaa.Dropout2d(p=1.0, nb_keep_channels=1)
aug2 = iaa.Dropout2d(p=1.0, nb_keep_channels=2)
aug3 = iaa.Dropout2d(p=1.0, nb_keep_channels=3)



# 对图像进行数据增强
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)

# 展示原始图像和数据增强后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Augmented Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Augmented Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Augmented Image3")
plt.show()

运行结果如下:

图2 原图及数据增强结果可视化

可以从图2看到:

  • p=1.0nb_keep_channels=1时,RGB图像中的R、G通道被丢弃(右上图)。
  • p=1.0nb_keep_channels=2时,RGB图像中的G通道被丢弃(左下图)。
  • p=1.0nb_keep_channels=3时,没有任何通道被丢弃,和原图完全一致(右下图)。

注意事项

  1. 概率p的选择p参数决定了丢弃图像通道的概率。较大的p值会导致更多的通道被丢弃,甚至导致图像全黑化。通常,选择一个较小的概率(例如0.2)可以在训练时提高模型的泛化能力。
  2. nb_keep_channels的选择nb_keep_channels参数能够决定所有图像中保持不变的最小通道数。例如,nb_keep_channels=1意味着即使p=1.0,每个图像中至少有一个通道不会被丢弃。合理地设置nb_keep_channels可以控制图像的变化程度。
  3. 与其他增强器结合使用:可以与其他图像增强方法结合使用,以获得更丰富的效果。例如,可以先应用模糊增强,然后再应用Dropout2D增强。
  4. 随机性:每次应用增强器可能会产生稍微不同的结果,因为通道的丢弃是随机的。为了确保结果的可重复性,可以使用aug.to_deterministic()方法将增强器转换为确定性状态。
  5. 处理方式:Dropout2D通常在输入数据进入神经网络之前应用,并在训练期间每次迭代时随机应用。在测试或推理阶段,通常不应用Dropout2D。

总结

iaa.Dropout2D是一个非常有用的图像增强方法,它通过随机丢弃通道来提高模型的泛化能力。使用时需要注意丢弃概率p的选择、nb_keep_channels的选择、与其他增强器的结合以及处理方式。适当地应用Dropout2D可以帮助改善模型的性能和防止过拟合。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

文章来源:https://blog.csdn.net/qq_41813454/article/details/135562390
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。