1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
2、文章讲解:代码随想录
3、视频讲解: 单调队列正式登场!| LeetCode:239. 滑动窗口最大值_哔哩哔哩_bilibili
4、题目:
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
进阶:
你能在线性时间复杂度内解决此题吗?
提示:
5、思路:
这是使用单调队列的经典题目。
难点是如何求一个区间里的最大值呢? (这好像是废话),暴力一下不就得了。
暴力方法,遍历一遍的过程中每次从窗口中再找到最大的数值,这样很明显是O(n × k)的算法。
有的同学可能会想用一个大顶堆(优先级队列)来存放这个窗口里的k个数字,这样就可以知道最大的最大值是多少了, 但是问题是这个窗口是移动的,而大顶堆每次只能弹出最大值,我们无法移除其他数值,这样就造成大顶堆维护的不是滑动窗口里面的数值了。所以不能用大顶堆。
此时我们需要一个队列,这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么。
这个队列应该长这个样子:
class MyQueue {
public:
void pop(int value) {
}
void push(int value) {
}
int front() {
return que.front();
}
};
每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值。
这么个队列香不香,要是有现成的这种数据结构是不是更香了!
其实在C++中,可以使用 multiset 来模拟这个过程,文末提供这个解法仅针对C++,以下讲解我们还是靠自己来实现这个单调队列。
然后再分析一下,队列里的元素一定是要排序的,而且要最大值放在出队口,要不然怎么知道最大值呢。
但如果把窗口里的元素都放进队列里,窗口移动的时候,队列需要弹出元素。
那么问题来了,已经排序之后的队列 怎么能把窗口要移除的元素(这个元素可不一定是最大值)弹出呢。
大家此时应该陷入深思.....
其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。
那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。C++中没有直接支持单调队列,需要我们自己来实现一个单调队列
不要以为实现的单调队列就是 对窗口里面的数进行排序,如果排序的话,那和优先级队列又有什么区别了呢。
来看一下单调队列如何维护队列里的元素。
动画如下:
对于窗口里的元素{2, 3, 5, 1 ,4},单调队列里只维护{5, 4} 就够了,保持单调队列里单调递减,此时队列出口元素就是窗口里最大元素。
此时大家应该怀疑单调队列里维护着{5, 4} 怎么配合窗口进行滑动呢?
设计单调队列的时候,pop,和push操作要保持如下规则:
保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。
为了更直观的感受到单调队列的工作过程,以题目示例为例,输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3,动画如下:
那么我们用什么数据结构来实现这个单调队列呢?
使用deque最为合适,在文章栈与队列:来看看栈和队列不为人知的一面(opens new window)中,我们就提到了常用的queue在没有指定容器的情况下,deque就是默认底层容器。
class Solution {
//利用双端队列手动实现单调队列
/**
* 用一个单调队列来存储对应的下标,每当窗口滑动的时候,直接取队列的头部指针对应的值放入结果集即可
* 单调队列类似 (tail -->) 3 --> 2 --> 1 --> 0 (--> head) (右边为头结点,元素存的是下标)
*/
public int[] maxSlidingWindow(int[] nums, int k) {
ArrayDeque<Integer> deque = new ArrayDeque<>();
int n = nums.length;
int[] res = new int[n - k + 1];
int idx = 0;
for(int i = 0; i < n; i++) {
// 根据题意,i为nums下标,是要在[i - k + 1, i] 中选到最大值,只需要保证两点
// 1.队列头结点需要在[i - k + 1, i]范围内,不符合则要弹出
while(!deque.isEmpty() && deque.peek() < i - k + 1){
deque.poll();
}
// 2.既然是单调,就要保证每次放进去的数字要比末尾的都大,否则也弹出
while(!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) {
deque.pollLast();
}
deque.offer(i);
// 因为单调,当i增长到符合第一个k范围的时候,每滑动一步都将队列头节点放入结果就行了
if(i >= k - 1){
res[idx++] = nums[deque.peek()];
}
}
return res;
}
}
1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
2、文章讲解:代码随想录
3、视频讲解:
优先级队列正式登场!大顶堆、小顶堆该怎么用?| LeetCode:347.前 K 个高频元素_哔哩哔哩_bilibili
4、题目:
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
示例 1:
示例 2:
提示:
5、思路:
这道题目主要涉及到如下三块内容:
首先统计元素出现的频率,这一类的问题可以使用map来进行统计。
然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列。
什么是优先级队列呢?
其实就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。
而且优先级队列内部元素是自动依照元素的权值排列。那么它是如何有序排列的呢?
缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。
什么是堆呢?
堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。
所以大家经常说的大顶堆(堆头是最大元素),小顶堆(堆头是最小元素),如果懒得自己实现的话,就直接用priority_queue(优先级队列)就可以了,底层实现都是一样的,从小到大排就是小顶堆,从大到小排就是大顶堆。
本题我们就要使用优先级队列来对部分频率进行排序。
为什么不用快排呢, 使用快排要将map转换为vector的结构,然后对整个数组进行排序, 而这种场景下,我们其实只需要维护k个有序的序列就可以了,所以使用优先级队列是最优的。
此时要思考一下,是使用小顶堆呢,还是大顶堆?
有的同学一想,题目要求前 K 个高频元素,那么果断用大顶堆啊。
那么问题来了,定义一个大小为k的大顶堆,在每次移动更新大顶堆的时候,每次弹出都把最大的元素弹出去了,那么怎么保留下来前K个高频元素呢。
而且使用大顶堆就要把所有元素都进行排序,那能不能只排序k个元素呢?
所以我们要用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。
寻找前k个最大元素流程如图所示:(图中的频率只有三个,所以正好构成一个大小为3的小顶堆,如果频率更多一些,则用这个小顶堆进行扫描)
class Solution {
/*Comparator接口说明:
* 返回负数,形参中第一个参数排在前面;返回正数,形参中第二个参数排在前面
* 对于队列:排在前面意味着往队头靠
* 对于堆(使用PriorityQueue实现):从队头到队尾按从小到大排就是最小堆(小顶堆),
* 从队头到队尾按从大到小排就是最大堆(大顶堆)--->队头元素相当于堆的根节点
* */
public int[] topKFrequent(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<>();// key为数组元素值,val为对应出现次数
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
// 在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数
// 出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2) -> pair1[1] - pair2[1]);
for (Map.Entry<Integer, Integer> entry : map.entrySet()) {// 小顶堆只需要维持k个元素有序
if (pq.size() < k) {// 小顶堆元素个数小于k个时直接加
pq.add(new int[]{entry.getKey(), entry.getValue()});
} else {
if (entry.getValue() > pq.peek()[1]) {// 当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
pq.poll();// 弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
pq.add(new int[]{entry.getKey(), entry.getValue()});
}
}
}
int[] ans = new int[k];
for (int i = k - 1; i >= 0; i--) {// 依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
ans[i] = pq.poll()[0];
}
return ans;
}
}
在栈与队列系列中,我们强调栈与队列的基础,也是很多同学容易忽视的点。
使用抽象程度越高的语言,越容易忽视其底层实现,而C++相对来说是比较接近底层的语言。
我们用栈实现队列,用队列实现栈来掌握的栈与队列的基本操作。
接着,通过括号匹配问题、字符串去重问题、逆波兰表达式问题来系统讲解了栈在系统中的应用,以及使用技巧。
通过求滑动窗口最大值,以及前K个高频元素介绍了两种队列:单调队列和优先级队列,这是特殊场景解决问题的利器,是一定要掌握的。