二叉树及其实现

发布时间:2024年01月10日

一.树的概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

  1. 有一个特殊的结点,称为根结点,根节点没有前驱结点
  2. 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  3. 因此,树是递归定义的。

在这里插入图片描述

1.2相关概念

在这里插入图片描述

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I…等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G…等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点;具有相同父节点的节点互称为兄弟节点 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林;

2.二叉树的概念及结构

2.1 概念

一棵二叉树是结点的一个有限集合,该集合:

  1. 为空
  2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

在这里插入图片描述
在这里插入图片描述

  1. 二叉树不存在度大于2的结点
  2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

2.2 特殊的二叉树

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。
  2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

在这里插入图片描述
在这里插入图片描述

3.二叉树的遍历

3.1 前序、中序以及后序遍历

  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。
  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。
  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
void PrevOrder(BTNode* root) {//前序
	if (root == NULL) {
		printf("NULL ");

		return;
	}

	printf("%d ", root->val);
	PrevOrder(root->left);
	PrevOrder(root->right);
}

void InOrder(BTNode* root)//中序
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	InOrder(root->left);
	printf("%d ", root->val);
	InOrder(root->right);
}

void PostOrder(BTNode* root)//后序
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}

	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->val);
}

3.2 层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

void LevelOrder(BTNode* root)
{
	Que q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		printf("%d ", front->val);
		if (front->left)
			QueuePush(&q, front->left);

		if (front->right)
			QueuePush(&q, front->right);

		QueuePop(&q);
	}
	printf("\n");

	QueueDestroy(&q);
}

3.3 判断二叉树是否是完全二叉树

int TreeComplete(BTNode* root)
{
	Que q;
	QueueInit(&q);

	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		if (front == NULL)
			break;

		QueuePush(&q, front->left);
		QueuePush(&q, front->right);
		QueuePop(&q);
	}
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);

		if (front != NULL)
		{
			QueueDestroy(&q);
			return false;
		}
	}

	QueueDestroy(&q);
	return true;
}

3.4 二叉树的高度

int TreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;

	return fmax(TreeHeight(root->left), TreeHeight(root->right)) + 1;
}

3.5 二叉树的叶子节点个数

int TreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;

	if (root->left == NULL && root->right == NULL)
	{
		return 1;
	}

	return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

3.6 二叉树的第k层的节点个数

int TreeKLevel(BTNode* root, int k)
{
	assert(k > 0);

	if (root == NULL)
		return 0;

	if (k == 1)
	{
		return 1;
	}

	return TreeKLevel(root->left, k - 1)
		+ TreeKLevel(root->right, k - 1);
}

3.7 二叉树销毁

void TreeDestroy(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}

	TreeDestroy(root->left);
	TreeDestroy(root->right);
	free(root);
	//root = NULL;
}

3.7 二叉树查找值为x的结点

BTNode* TreeFind(BTNode* root, int x)
{
	if (root == NULL)
		return NULL;

	if (root->val == x)
		return root;

	BTNode* ret = NULL;
	ret = TreeFind(root->left, x);
	if (ret)
		return ret;

	ret = TreeFind(root->right, x);
	if (ret)
		return ret;

	return NULL;
}
文章来源:https://blog.csdn.net/qq_63168095/article/details/135514028
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。