第二篇【传奇开心果短博文系列】Python的OpenCV库技术点案例示例:图像处理

发布时间:2024年01月23日

传奇开心果短博文系列

  • 系列短博文目录
    • Python的OpenCV库技术点案例示例短博文系列
  • 博文目录
    • 一、项目目标
    • 二、第一个示例代码
    • 三、第二个示例代码
    • 四、第三个示例代码
    • 五、第四个示例代码
    • 六、第五个示例代码
    • 七、知识点归纳总结

系列短博文目录

Python的OpenCV库技术点案例示例短博文系列

博文目录

一、项目目标

在这里插入图片描述OpenCV图像处理:包括图像滤波、边缘检测、图像变换、颜色空间转换等功能,写示例代码。

二、第一个示例代码

图像滤波
边缘检测
图像变换
颜色空间转换

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 图像滤波
blur = cv2.GaussianBlur(img, (5, 5), 0)

# 边缘检测
edges = cv2.Canny(img, 100, 200)

# 图像变换
rows, cols = img.shape[:2]
M = cv2.getRotationMatrix2D((cols/2, rows/2), 45, 1)
dst = cv2.warpAffine(img, M, (cols, rows))

# 颜色空间转换
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

# 显示结果
cv2.imshow('Original', img)
cv2.imshow('Blurred', blur)
cv2.imshow('Edges', edges)
cv2.imshow('Transformed', dst)
cv2.imshow('HSV', hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()

三、第二个示例代码

灰度图像
在这里插入图片描述
膨胀和腐蚀
透视变换
转换为LAB颜色空间

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 二值化
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 膨胀和腐蚀
kernel = np.ones((5,5),np.uint8)
dilation = cv2.dilate(thresh, kernel, iterations=1)
erosion = cv2.erode(thresh, kernel, iterations=1)

# 透视变换
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
M = cv2.getPerspectiveTransform(pts1,pts2)
perspective = cv2.warpPerspective(img,M,(300,300))

# 转换为LAB颜色空间
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)

# 显示结果
cv2.imshow('Original', img)
cv2.imshow('Gray', gray)
cv2.imshow('Thresh', thresh)
cv2.imshow('Dilation', dilation)
cv2.imshow('Erosion', erosion)
cv2.imshow('Perspective', perspective)
cv2.imshow('LAB', lab)
cv2.waitKey(0)
cv2.destroyAllWindows()

四、第三个示例代码

图像缩放
旋转图像
图像平移
图像融合

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 图像缩放
resized = cv2.resize(img, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_CUBIC)

# 旋转图像
rows, cols = img.shape[:2]
M = cv2.getRotationMatrix2D((cols/2, rows/2), 90, 1)
rotated = cv2.warpAffine(img, M, (cols, rows))

# 图像平移
M = np.float32([[1, 0, 100], [0, 1, 50]])
translated = cv2.warpAffine(img, M, (cols, rows))

# 图像融合
img2 = cv2.imread('input2.jpg')
blended = cv2.addWeighted(img, 0.7, img2, 0.3, 0)

# 显示结果
cv2.imshow('Resized', resized)
cv2.imshow('Rotated', rotated)
cv2.imshow('Translated', translated)
cv2.imshow('Blended', blended)
cv2.waitKey(0)
cv2.destroyAllWindows()

五、第四个示例代码

边缘保留滤波
在这里插入图片描述在这里插入图片描述在这里插入图片描述

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 边缘保留滤波
dst = cv2.edgePreservingFilter(img, flags=1, sigma_s=60, sigma_r=0.4)

# 图像修复
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255
inpainted = cv2.inpaint(img, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)

# 角点检测
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
corners = cv2.goodFeaturesToTrack(gray, maxCorners=25, qualityLevel=0.01, minDistance=10)

# 标记角点
for corner in corners:
    x, y = corner.ravel()
    cv2.circle(img, (x, y), 5, (0, 0, 255), -1)

# 显示结果
cv2.imshow('Edge Preserving Filter', dst)
cv2.imshow('Inpainted', inpainted)
cv2.imshow('Corners', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

六、第五个示例代码

图像金字塔
角点检测与追踪
创建随机颜色
光流追踪

import cv2
import numpy as np

# 读取图像
img = cv2.imread('input.jpg')

# 图像金字塔
lower_reso = cv2.pyrDown(img)
higher_reso = cv2.pyrUp(img)

# 角点检测与追踪
feature_params = dict( maxCorners = 100, qualityLevel = 0.3, minDistance = 7, blockSize = 7 )
lk_params = dict( winSize  = (15,15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
p0 = cv2.goodFeaturesToTrack(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), mask = None, **feature_params)
old_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 创建随机颜色
color = np.random.randint(0,255,(100,3))

# 光流追踪
mask = np.zeros_like(img)
while True:
    ret, frame = cap.read()
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
    good_new = p1[st==1]
    good_old = p0[st==1]
    for i,(new,old) in enumerate(zip(good_new,good_old)):
        a,b = new.ravel()
        c,d = old.ravel()
        mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
        frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
    img = cv2.add(frame,mask)
    cv2.imshow('frame',img)
    k = cv2.waitKey(30) & 0xff
    if k == 27:
        break
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1,1,2)

# 关闭摄像头
cap.release()
cv2.destroyAllWindows()

七、知识点归纳总结

在上面的代码示例中,我们涉及了许多计算机视觉的常见操作和技术。以下是这些知识点的归纳总结:

在这里插入图片描述1. 读取和显示图像:使用OpenCV库的cv2.imread()cv2.imshow()函数读取和显示图像。

  1. 图像缩放:使用cv2.resize()函数对图像进行缩放操作。

  2. 图像旋转:使用cv2.getRotationMatrix2D()cv2.warpAffine()函数对图像进行旋转操作。

  3. 图像平移:使用cv2.warpAffine()函数对图像进行平移操作。

  4. 图像融合:使用cv2.addWeighted()函数对两幅图像进行融合操作。

  5. 边缘保留滤波:使用cv2.edgePreservingFilter()函数进行边缘保留滤波操作。

  6. 图像修复:使用cv2.inpaint()函数对图像进行修复操作。

  7. 角点检测与追踪:使用cv2.goodFeaturesToTrack()和光流法进行角点检测和追踪操作。

  8. 图像金字塔:使用cv2.pyrDown()cv2.pyrUp()函数进行图像金字塔操作。

在这里插入图片描述以上这些知识点涵盖了计算机视觉中的许多常见操作和技术,可以帮助我们对图像进行处理、分析和理解。这些技术在许多领域都有广泛的应用,包括图像处理、计算机视觉、机器学习等。希望这些知识点的归纳总结对您有所帮助!

文章来源:https://blog.csdn.net/jackchuanqi/article/details/135762062
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。