简易机器学习笔记(九)LeNet实例 - 在眼疾识别数据集iChallenge-PM上的应用

发布时间:2024年01月04日

前言

上一节大概讲了一下LeNet的内容,这一章就直接来用,实际上用一下LeNet来进行训练和分类试试。

调用的数据集:

https://aistudio.baidu.com/datasetdetail/19065

说明:

如今近视已经成为困扰人们健康的一项全球性负担,在近视人群中,有超过35%的人患有重度近视。近视会拉长眼睛的光轴,也可能引起视网膜或者络网膜的病变。随着近视度数的不断加深,高度近视有可能引发病理性病变,这将会导致以下几种症状:视网膜或者络网膜发生退化、视盘区域萎缩、漆裂样纹损害、Fuchs斑等。因此,及早发现近视患者眼睛的病变并采取治疗,显得非常重要。

数据集实际上用了这么几个部分:

在这里插入图片描述
其中DATADIR目录下的图片都是以下形式:

在这里插入图片描述
其中照片的成分是按照文件的名称来进行区分的,当其命名规则为P开头的,则代表其为病理性近视,N开头的为正常眼睛,而H开头的则代表为高度近视。

我们将病理性患者的图片作为正样本,标签为1; 非病理性患者的图片作为负样本,标签为0。从数据集中选取两张图片,通过LeNet提取特征,构建分类器,对正负样本进行分类,并将图片显示出来。

流程

正式开始之前,我们还是要将任务按照流程划分
我们在这次开发中,不仅要训练模型,计算Loss,还需要用数据集对成果进行准确性分析。

  1. 定义数据读取器

  2. 定义LeNet模型

  3. 编写训练过程

  4. 定义评估过程

  5. 进行模型计算

实际开发

定义数据读取器

我们需要读取两部分数据,分别是训练集和评估集,这两个集是分开的

  1. 首先我们需要进行一个预处理部分:
# 对读入的图像数据进行预处理
def transform_img(img):
    # 将图片尺寸缩放道 224x224
    img = cv2.resize(img, (224, 224))
    # 读入的图像数据格式是[H, W, C]
    # 使用转置操作将其变成[C, H, W]
    img = np.transpose(img, (2,0,1))
    img = img.astype('float32')
    # 将数据范围调整到[-1.0, 1.0]之间
    img = img / 255.
    img = img * 2.0 - 1.0
    return img
  1. 定义一个训练集数据读取器

类似之前的,我们需要将训练集划分batch,还需要将其打乱进行。

至于Label,则是由名称决定的

分组读取完毕之后,

# 定义训练集数据读取器
def data_loader(datadir, batch_size=10, mode = 'train'):
    # 将datadir目录下的文件列出来,每条文件都要读入
    filenames = os.listdir(datadir)
    def reader():
        if mode == 'train':
            # 训练时随机打乱数据顺序
            random.shuffle(filenames)
        batch_imgs = []
        batch_labels = []
        for name in filenames:
            filepath = os.path.join(datadir, name)
            img = cv2.imread(filepath)
            img = transform_img(img)
            if name[0] == 'H' or name[0] == 'N':
                # H开头的文件名表示高度近似,N开头的文件名表示正常视力
                # 高度近视和正常视力的样本,都不是病理性的,属于负样本,标签为0
                label = 0
            elif name[0] == 'P':
                # P开头的是病理性近视,属于正样本,标签为1
                label = 1
            else:
                raise('Not excepted file name')
            # 每读取一个样本的数据,就将其放入数据列表中
            batch_imgs.append(img)
            batch_labels.append(label)
            if len(batch_imgs) == batch_size:
                # 当数据列表的长度等于batch_size的时候,
                # 把这些数据当作一个mini-batch,并作为数据生成器的一个输出
                imgs_array = np.array(batch_imgs).astype('float32')
                labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
                yield imgs_array, labels_array
                batch_imgs = []
                batch_labels = []

        if len(batch_imgs) > 0:
            # 剩余样本数目不足一个batch_size的数据,一起打包成一个mini-batch
            imgs_array = np.array(batch_imgs).astype('float32')
            labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
            yield imgs_array, labels_array

    return reader

定义一个验证集数据读取器

训练集读取时通过文件名来确定样本标签,验证集则通过csvfile来读取每个图片对应的标签

请查看解压后的验证集标签数据,观察csvfile文件里面所包含的内容

需要注意的是,原先的文件不是csv,而是一个xlsx,不能直接改个后缀就直接用,而是需要使用office或者wps重新保存一下,而且需要注意的是,请使用UTF-8或者gbk格式打开,否则可能会导致无法正确读取文件。

csvfile文件所包含的内容格式如下,每一行代表一个样本,其中第一列是图片id,第二列是文件名,第三列是图片标签,第四列和第五列是Fovea的坐标,与分类任务无关

ID,imgName,Label,Fovea_X,Fovea_Y
1,V0001.jpg,0,1157.74,1019.87
2,V0002.jpg,1,1285.82,1080.47

打开包含验证集标签的csvfile,并读入其中的内容

# 定义验证集数据读取器
def valid_data_loader(datadir, csvfile, batch_size=10, mode='valid'):
    # 训练集读取时通过文件名来确定样本标签,验证集则通过csvfile来读取每个图片对应的标签
    # 请查看解压后的验证集标签数据,观察csvfile文件里面所包含的内容
    # csvfile文件所包含的内容格式如下,每一行代表一个样本,
    # 其中第一列是图片id,第二列是文件名,第三列是图片标签,
    # 第四列和第五列是Fovea的坐标,与分类任务无关
    # ID,imgName,Label,Fovea_X,Fovea_Y
    # 1,V0001.jpg,0,1157.74,1019.87
    # 2,V0002.jpg,1,1285.82,1080.47
    # 打开包含验证集标签的csvfile,并读入其中的内容
    filelists = open(csvfile).readlines()
    def reader():
        batch_imgs = []
        batch_labels = []
        for line in filelists[1:]:
            line = line.strip().split(',')
            name = line[1]
            label = int(line[2])
            # 根据图片文件名加载图片,并对图像数据作预处理
            filepath = os.path.join(datadir, name)
            img = cv2.imread(filepath)
            img = transform_img(img)
            # 每读取一个样本的数据,就将其放入数据列表中
            batch_imgs.append(img)
            batch_labels.append(label)
            if len(batch_imgs) == batch_size:
                # 当数据列表的长度等于batch_size的时候,
                # 把这些数据当作一个mini-batch,并作为数据生成器的一个输出
                imgs_array = np.array(batch_imgs).astype('float32')
                labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
                yield imgs_array, labels_array
                batch_imgs = []
                batch_labels = []

        if len(batch_imgs) > 0:
            # 剩余样本数目不足一个batch_size的数据,一起打包成一个mini-batch
            imgs_array = np.array(batch_imgs).astype('float32')
            labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)
            yield imgs_array, labels_array

    return reader

定义LeNet模型

这个地方其实上一节也说过了,就是LeNet是如何定义的,详情可以参考

简易机器学习笔记(八)关于经典的图像分类问题-常见经典神经网络LeNet

这里就不过多介绍了,简单放一下代码:

# -*- coding:utf-8 -*-

# 导入需要的包
import paddle
import numpy as np
from paddle.nn import Conv2D, MaxPool2D, Linear, Dropout
import paddle.nn.functional as F

# 定义 LeNet 网络结构
class LeNet(paddle.nn.Layer):
    def __init__(self, num_classes=1):
        super(LeNet, self).__init__()
        self.num_classes = num_classes
        # 创建卷积和池化层块,每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化
        self.conv1 = Conv2D(in_channels=3, out_channels=6, kernel_size=5)
        self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
        self.conv2 = Conv2D(in_channels=6, out_channels=16, kernel_size=5)
        self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
        # 创建第3个卷积层
        self.conv3 = Conv2D(in_channels=16, out_channels=120, kernel_size=4)
        # 创建全连接层,第一个全连接层的输出神经元个数为64
        self.fc1 = Linear(in_features=300000, out_features=64)
        # 第二个全连接层输出神经元个数为分类标签的类别数
        self.fc2 = Linear(in_features=64, out_features=num_classes)

    # 网络的前向计算过程
    def forward(self, x, label=None):
        x = self.conv1(x)
        x = F.sigmoid(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.sigmoid(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.sigmoid(x)
        x = paddle.reshape(x, [x.shape[0], -1])
        x = self.fc1(x)
        x = F.sigmoid(x)
        x = self.fc2(x)
        if label is not None:
            if self.num_classes == 1:
                pred = F.sigmoid(x)
                pred = paddle.concat([1.0 - pred, pred], axis=1)
                acc = paddle.metric.accuracy(pred, paddle.cast(label, dtype='int64'))
            else:
                acc = paddle.metric.accuracy(x, paddle.cast(label, dtype='int64'))
            return x, acc
        else:
            return x

编写训练过程

训练过程实际上和之前文章中提到的训练过程并无二至,实际上还是老一套:

  1. 读数据
  2. 前向计算预测
  3. 计算loss函数
  4. 反向传播
  5. 更新权重
  6. 清除梯度

当然了,这次的训练主要目的不是为了进行实际的工作,而是来进行模型准确度的测算,这也是我们在上面为什么读取数据集的时候除了基本的训练集,还添加了一个验证集。

验证集的验证工作其实比较简单,就是把model和验证集的参数传进去,然后让模型的预测和实际结果进行比较,计算出预测值和实际的label值的binary_cross_entropy_with_logits,再求出平均的损失值和准确度

代码如下:

# -*- coding: utf-8 -*-
# LeNet 识别眼疾图片
import os
import random
import paddle
import numpy as np

DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'
DATADIR2 = '/home/aistudio/work/palm/PALM-Validation400'
CSVFILE = '/home/aistudio/labels.csv'

def train_pm(model, optimizer):
    print('start training ... ')
    model.train()

    #定义数据读取器,训练数据读取器和验证数据读取器
    train_loader = data_loader(DATADIR, batch_size=10, mode='train')
    valid_loader = valid_data_loader(DATADIR2, CSVFILE)
    for epoch in range(EPOCH_NUM):
        for batch_id,data in enumerate(train_loader()):
            x_data,y_data = data
            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)
            # 运行模型前向计算,得到预测值
            logits = model(img)
            loss = F.binary_cross_entropy_with_logits(logits, label)
            avg_loss = paddle.mean(loss)

            if batch_id % 10 == 0:
                print("epoch: {}, batch_id: {}, loss is: {:.4f}".format(epoch, batch_id, float(avg_loss.numpy())))
            
            #反向传播,更新权重,清除梯度
            avg_loss.backward()
            optimizer.step()
            optimizer.clear_grad()
        
        model.eval()
        accuracies = []
        losses = []

        for batch_id,data in enumerate(valid_loader()):
            x_data, y_data = data
            img = paddle.to_tensor(x_data)
            label = paddle.to_tensor(y_data)
            # 运行模型前向计算,得到预测值
            logits = model(img)
            # 二分类,sigmoid计算后的结果以0.5为阈值分两个类别
            # 计算sigmoid后的预测概率,进行loss计算
            pred = F.sigmoid(logits)
            loss = F.binary_cross_entropy_with_logits(logits, label)

            # 计算预测概率小于0.5的类别
            pred2 = pred * (-1.0) + 1.0   

            # 得到两个类别的预测概率,并沿第一个维度级联
            pred = paddle.concat([pred2, pred], axis=1)
            acc = paddle.metric.accuracy(pred, paddle.cast(label, dtype='int64'))

            accuracies.append(acc.numpy())
            losses.append(loss.numpy())
        print("[validation] accuracy/loss: {:.4f}/{:.4f}".format(np.mean(accuracies), np.mean(losses)))
        model.train()

        paddle.save(model.state_dict(), 'palm.pdparams')
        paddle.save(optimizer.state_dict(), 'palm.pdopt')


#定义评估过程
def evaluation(model,params_file_path):

    print('start evaluation.....')

    #加载模型参数
    model_state_dict = paddle.load(params_file_path)
    model.load_dict(model_state_dict)

    model.eval()
    eval_loader = data_loader(DATADIR, 
                        batch_size=10, mode='eval')
    acc_set = []
    avg_loss_set = []

    for batch_id, data in enumerate(eval_loader()):
        x_data,y_data = data
        img = paddle.to_tensor(x_data)
        label = paddle.to_tensor(y_data)
        y_data = y_data.astype(np.int64)
        label_64 = paddle.to_tensor(y_data)

        # 计算预测和精度
        prediction, acc = model(img, label_64)

        # 计算损失函数值
        loss = F.binary_cross_entropy_with_logits(prediction, label)
        avg_loss = paddle.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))
    # 求平均精度
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    print('loss={:.4f}, acc={:.4f}'.format(avg_loss_val_mean, acc_val_mean))

上述就是LeNet在实际验证中的总全部代码,稍微看懂整理一下即可。我们可以跑一下看看结果

结果

他奶奶的,本来就是个三分法的问题,算出来的准确度才0.5几,那不就和我瞎猜准确度高一点点…

不过也能理解,原来1444x1444的图片压缩到244x244再进行处理,这个精确度能高就有鬼了…

不过这也算是一个全流程的设计与开发,可以参考一下流程,

start training ... 
epoch: 0, batch_id: 0, loss is: 0.8100
epoch: 0, batch_id: 10, loss is: 0.6131
epoch: 0, batch_id: 20, loss is: 0.7744
epoch: 0, batch_id: 30, loss is: 0.7073
[validation] accuracy/loss: 0.5275/0.6923
epoch: 1, batch_id: 0, loss is: 0.7042
epoch: 1, batch_id: 10, loss is: 0.6933
epoch: 1, batch_id: 20, loss is: 0.6831
epoch: 1, batch_id: 30, loss is: 0.6810
[validation] accuracy/loss: 0.5275/0.6920
epoch: 2, batch_id: 0, loss is: 0.7451
epoch: 2, batch_id: 10, loss is: 0.6951
epoch: 2, batch_id: 20, loss is: 0.7227
epoch: 2, batch_id: 30, loss is: 0.6579
[validation] accuracy/loss: 0.5275/0.6918
epoch: 3, batch_id: 0, loss is: 0.6808
epoch: 3, batch_id: 10, loss is: 0.6888
epoch: 3, batch_id: 20, loss is: 0.6944
epoch: 3, batch_id: 30, loss is: 0.6829
[validation] accuracy/loss: 0.5275/0.6917
epoch: 4, batch_id: 0, loss is: 0.6855
epoch: 4, batch_id: 10, loss is: 0.6458
epoch: 4, batch_id: 20, loss is: 0.7227
epoch: 4, batch_id: 30, loss is: 0.7857
[validation] accuracy/loss: 0.5275/0.6917
start evaluation.....
loss=0.6912, acc=0.5325

我们换一种方法,不改变图片的大小了,直接上1444x1444图片,然后把神经元改一下,fc1的全连接层的输入值要改成15123000

 # 创建全连接层,第一个全连接层的输出神经元个数为64
 self.fc1 = Linear(in_features=15123000, out_features=64)

然后这个模型,他奶奶的,跑了快五分钟才跑了一个batch,不知道跑到明天能不能跑出来…跑出来再给大家看看结果

算了笑死,根本跑不明白,不跑了

文章来源:https://blog.csdn.net/Andius/article/details/135375541
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。