题目:
给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。?
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
// 最佳买卖股票时机含冷冻期 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
func maxProfit(prices []int) int {
n := len(prices)
if n < 2 {
return 0
}
dp := make([][]int, n)
status := make([]int, n * 4)
for i := range dp {
dp[i] = status[:4]
status = status[4:]
}
dp[0][0] = -prices[0]
for i := 1; i < n; i++ {
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][1] - prices[i], dp[i - 1][3] - prices[i]))
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3])
dp[i][2] = dp[i - 1][0] + prices[i]
dp[i][3] = dp[i - 1][2]
}
return max(dp[n - 1][1], max(dp[n - 1][2], dp[n - 1][3]))
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
题目:
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
// 买卖股票的最佳时机含手续费 动态规划
// 时间复杂度O(n) 空间复杂度O(n)
func maxProfit(prices []int, fee int) int {
n := len(prices)
dp := make([][2]int, n)
dp[0][0] = -prices[0]
for i := 1; i < n; i++ {
dp[i][1] = max(dp[i-1][1], dp[i-1][0] + prices[i] - fee)
dp[i][0] = max(dp[i-1][0], dp[i-1][1] - prices[i])
}
return dp[n-1][1]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}