2023年英特尔On技术创新大会中国站即将上线。在这次盛会中,将带来两场主题演讲、五大技术洞察以及十九堂专题课程,深入探讨最新一代增强AI能力的计算平台如何支持开放、多架构的软件方案,为未来的技术和应用创新奠定基础。本次大会带领许多技术分享,我这里选择视觉AI来给大家讲解一下。
在过去的15年里,人工智能(AI)领域取得了惊人的进展。
在2011年,苹果公司的Siri语音助手被引入iPhone4S,标志着语音识别技术在移动设备上的广泛应用。Siri能够理解和回答用户的问题,并执行一些基本的任务,如发送短信、设置提醒等。
2012年,谷歌的AlexNet在ImageNet图像识别竞赛中取得了显著的优势,标志着深度学习在图像识别中的崛起。随后,深度学习模型在图像分类、目标检测、图像生成等任务上取得了令人瞩目的结果。
AlphaGo在2016年击败了围棋世界冠军,展示了人工智能在复杂策略游戏中的超人水平。类似的成就也在其他游戏中取得,包括国际象棋、扑克和电子竞技游戏。
2020年,OpenAI发布了GPT-3语言模型,它是迄今为止最大的自然语言处理模型之一,拥有1750亿个参数。GPT-3在多个自然语言处理任务上取得了令人瞩目的结果,包括文本生成、翻译和问答。展示了深度学习在自然语言处理中的巨大潜力。
什么是全尺度视觉学习?
📌全尺度视觉学习是指通过计算机视觉技术和机器学习方法,使计算机能够像人类一样从视觉输入中进行全面的学习和理解。
高级理解
和推理能力
,使其能够感知
、识别
和理解
复杂的视觉场景。物体识别
、场景理解
、行为预测
等。目标检测
、图像分类
、语义分割
、实例分割
、姿态估计
等。
实验证明,相比于传统的二维姿态估计方法,使用GridConv进行三维人体姿态估计可以获得更高的准确率。这是因为GridConv能够更好地利用深度信息,并捕捉到三维空间中的细微变化,从而提高了姿态估计的精度和稳定性。
📌KW预训练和迁移模型是一种基于知识蒸馏的预训练方法,用于提高神经网络模型的性能。它通过在大规模数据集上进行预训练,学习到丰富的特征表示,并将这些特征迁移到目标任务上,从而提高目标任务的性能。
📌无数据增强稠密对比知识蒸馏(Af-DCD)是一种用于迁移学习的方法,提高目标任务的性能。它结合了无数据增强和稠密对比知识蒸馏两种技术。通过不使用数据增强,可以减少训练时间和计算资源的消耗。同时,通过稠密对比知识蒸馏,可以传递预训练模型的知识,提高目标任务的性能。
📌全扩展视觉AI-OSVAl Model Learner Zoo是一个用于视觉AI模型学习的全面扩展的模型学习库。它提供了一系列的模型学习算法和模型架构,可以用于各种视觉任务,如图像分类、目标检测、语义分割等。
📌在视觉AI领域中,建立一个完整的技术闭环,使得从数据采集、模型训练、模型部署到应用反馈的整个过程能够无缝衔接,形成一个循环迭代的闭环。通过这个闭环,可以不断优化和改进视觉AI模型,释放其真正的潜力。实现视觉AI技术的不断进步和优化,释放其真正的潜力。这将有助于推动视觉AI在各个领域的应用,提升人们的生活质量和工作效率。
🎥 🎥2023 英特尔On技术创新大会直播回顾:https://marketing.intel.cn/innovation#/
对于这次的Intel·on创新技术大会的直播总结:
📢 📢 2023 英特尔On技术创新大会内容涵盖了人工智能、新一代AI PC计算平台以及新一代至强平台等多个领域。尤其令人期待的是视觉 AI ,加速创新AI应用,为未来的技术和应用创新带来了巨大的潜力。通过观看直播,我获得了丰富的知识和见解,对数字化经济和AI的发展充满了希望,相信它们将为我们的生活带来更多便利和创新。