Atcoder Beginner Contest 335 (A - F 题)

发布时间:2024年01月08日

A - 2023

Problem Statement

You are given a string S S S consisting of lowercase English letters and digits.
S S S is guaranteed to end with 2023.
Change the last character of S S S to 4 and print the modified string.

Constraints

  • S S S is a string of length between 4 4 4 and 100 100 100, inclusive, consisting of lowercase English letters and digits.
  • S S S ends with 2023.

Input

The input is given from Standard Input in the following format:

S S S

Output

Print the answer.

Sample Input 1

hello2023

Sample Output 1

hello2024

Changing the last character of hello2023 to 4 yields hello2024.

Sample Input 2

worldtourfinals2023

Sample Output 2

worldtourfinals2024

Sample Input 3

2023

Sample Output 3

2024

S S S is guaranteed to end with 2023, possibly being 2023 itself.

Sample Input 4

20232023

Sample Output 4

20232024

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	string S;

	cin >> S;

	int N = S.size();
	S = ' ' + S;

	S[N] = '4';

	S.erase(0, 1);
	cout << S << endl;

	return 0;
}

B - Tetrahedral Number

Problem Statement

You are given an integer N N N.

Print all triples of non-negative integers ( x , y , z ) (x,y,z) (x,y,z) such that x + y + z ≤ N x+y+z\leq N x+y+zN in ascending lexicographical order.

What is lexicographical order for non-negative integer triples?

A triple of non-negative integers ( x , y , z ) (x,y,z) (x,y,z) is said to be lexicographically smaller than ( x ′ , y ′ , z ′ ) (x',y',z') (x,y,z) if and only if one of the following holds:

  • x < x ′ x < x' x<x;
  • x = x ′ x=x' x=x and y < y ′ y< y' y<y;
  • x = x ′ x=x' x=x and y = y ′ y=y' y=y and z < z ′ z< z' z<z.

Constraints

  • 0 ≤ N ≤ 21 0 \leq N \leq 21 0N21
  • N N N is an integer.

Input

The input is given from Standard Input in the following format:

N N N

Output

Print all triples of non-negative integers ( x , y , z ) (x,y,z) (x,y,z) such that x + y + z ≤ N x+y+z\leq N x+y+zN in ascending lexicographical order, with x , y , z x,y,z x,y,z separated by spaces, one triple per line.

Sample Input 1

3

Sample Output 1

0 0 0
0 0 1
0 0 2
0 0 3
0 1 0
0 1 1
0 1 2
0 2 0
0 2 1
0 3 0
1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 2 0
2 0 0
2 0 1
2 1 0
3 0 0

Sample Input 2

4

Sample Output 2

0 0 0
0 0 1
0 0 2
0 0 3
0 0 4
0 1 0
0 1 1
0 1 2
0 1 3
0 2 0
0 2 1
0 2 2
0 3 0
0 3 1
0 4 0
1 0 0
1 0 1
1 0 2
1 0 3
1 1 0
1 1 1
1 1 2
1 2 0
1 2 1
1 3 0
2 0 0
2 0 1
2 0 2
2 1 0
2 1 1
2 2 0
3 0 0
3 0 1
3 1 0
4 0 0

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int N;

	cin >> N;

	for (int X = 0; X <= N; X ++)
		for (int Y = 0; Y <= N; Y ++)
			for (int Z = 0; Z <= N; Z ++)
				if (X + Y + Z <= N)
					cout << X << " " << Y << " " << Z << endl;

	return 0;
}

C - Loong Tracking

Problem Statement

Takahashi has created a game where the player controls a dragon on a coordinate plane.

The dragon consists of N N N parts numbered 1 1 1 to N N N, with part 1 1 1 being called the head.

Initially, part i i i is located at the coordinates ( i , 0 ) (i,0) (i,0). Process Q Q Q queries as follows.

  • 1 C: Move the head by 1 1 1 in direction C C C. Here, C C C is one of R, L, U, and D, which represent the positive x x x-direction, negative x x x-direction, positive y y y-direction, and negative y y y-direction, respectively. Each part other than the head moves to follow the part in front of it. That is, part i i i ( 2 ≤ i ≤ N ) (2\leq i \leq N) (2iN) moves to the coordinates where part i ? 1 i-1 i?1 was before the move.
  • 2 p: Find the coordinates of part p p p.

Constraints

  • 2 ≤ N ≤ 1 0 6 2 \leq N \leq 10^6 2N106
  • 1 ≤ Q ≤ 2 × 1 0 5 1 \leq Q \leq 2\times 10^5 1Q2×105
  • For the first type of query, C C C is one of R, L, U, and D.
  • For the second type of query, 1 ≤ p ≤ N 1\leq p \leq N 1pN.
  • All numerical input values are integers.

Input

The input is given from Standard Input in the following format:

N N N Q Q Q
q u e r y 1 \mathrm{query}_1 query1?
? \vdots ?
q u e r y Q \mathrm{query}_Q queryQ?

Each query is in one of the following two formats:

1 1 1 C C C

2 2 2 p p p

Output

Print q q q lines, where q q q is the number of queries of the second type.
The i i i-th line should contain x x x and y y y separated by a space, where ( x , y ) (x,y) (x,y) are the answer to the i i i-th such query.

Sample Input 1

5 9
2 3
1 U
2 3
1 R
1 D
2 3
1 L
2 1
2 5

Sample Output 1

113

The integers that can be expressed as the sum of exactly three repunits are 3 , 13 , 23 , 33 , 113 , … 3, 13, 23, 33, 113, \ldots 3,13,23,33,113, in ascending order. For example, 113 113 113 can be expressed as 113 = 1 + 1 + 111 113 = 1 + 1 + 111 113=1+1+111.
Note that the three repunits do not have to be distinct.

Sample Input 2

3 0
2 0
1 1
1 0
1 0

At each time when processing the second type of query, the parts are at the following positions:

Figure

Note that multiple parts may exist at the same coordinates.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;

const int SIZE = 2e5 + 10;

int N, Q;
int X[SIZE], Y[SIZE];

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> N >> Q;

	int i = 0;
	X[0] = 1, Y[0] = 0;
	while (Q --)
	{
		int op, P;
		char T;

		cin >> op;

		if (op == 1)
		{
			cin >> T;
			i ++;
			if (T == 'R') X[i] = X[i - 1] + 1, Y[i] = Y[i - 1];
			else if (T == 'U') Y[i] = Y[i - 1] + 1, X[i] = X[i - 1];
			else if (T == 'L') X[i] = X[i - 1] - 1, Y[i] = Y[i - 1];
			else Y[i] = Y[i - 1] - 1, X[i] = X[i - 1];
		}
		else
		{
			cin >> P;
			if (i < P) cout << P - i << " " << 0 << endl;
			else cout << X[i - P + 1] << " " << Y[i - P + 1] << endl;
		}
	}

	return 0;
}

D - Loong and Takahashi

Problem Statement

There is a grid with N N N rows and N N N columns, where N N N is an odd number at most 45 45 45.

Let ( i , j ) (i,j) (i,j) denote the cell at the i i i-th row from the top and j j j-th column from the left.

In this grid, you will place Takahashi and a dragon consisting of N 2 ? 1 N^2-1 N2?1 parts numbered 1 1 1 to N 2 ? 1 N^2-1 N2?1 in such a way that satisfies the following conditions:

  • Takahashi must be placed at the center of the grid, that is, in cell ( N + 1 2 , N + 1 2 ) (\frac{N+1}{2},\frac{N+1}{2}) (2N+1?,2N+1?).
  • Except for the cell where Takahashi is, exactly one dragon part must be placed in each cell.
  • For every integer x x x satisfying 2 ≤ x ≤ N 2 ? 1 2 \leq x \leq N^2-1 2xN2?1, the dragon part x x x must be placed in a cell adjacent by an edge to the cell containing part x ? 1 x-1 x?1.
    • Cells ( i , j ) (i,j) (i,j) and ( k , l ) (k,l) (k,l) are said to be adjacent by an edge if and only if ∣ i ? k ∣ + ∣ j ? l ∣ = 1 |i-k|+|j-l|=1 i?k+j?l=1.

Print one way to arrange the parts to satisfy the conditions. It is guaranteed that there is at least one arrangement that satisfies the conditions.

Constraints

  • 3 ≤ N ≤ 45 3 \leq N \leq 45 3N45
  • N N N is odd.

Input

The input is given from Standard Input in the following format:

N N N

Output

Print N N N lines.
The i i i-th line should contain X i , 1 , … , X i , N X_{i,1},\ldots,X_{i,N} Xi,1?,,Xi,N? separated by spaces, where X i , j X_{i,j} Xi,j? is T when placing Takahashi in cell ( i , j ) (i,j) (i,j) and x x x when placing part x x x there.

Sample Input 1

5

Sample Output 1

1 2 3 4 5
16 17 18 19 6
15 24 T 20 7
14 23 22 21 8
13 12 11 10 9

The following output also satisfies all the conditions and is correct.

9 10 11 14 15
8 7 12 13 16
5 6 T 18 17
4 3 24 19 20 
1 2 23 22 21

On the other hand, the following outputs are incorrect for the reasons given.

Takahashi is not at the center.

1 2 3 4 5
10 9 8 7 6
11 12 13 14 15
20 19 18 17 16
21 22 23 24 T

The cells containing parts 23 23 23 and 24 24 24 are not adjacent by an edge.

1 2 3 4 5
10 9 8 7 6
11 12 24 22 23
14 13 T 21 20
15 16 17 18 19

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;

const int SIZE = 50;

int N;
int Result[SIZE][SIZE];
int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0};

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> N;

	int X = 1, Y = 1, Sd = 0;
	for (int i = 1; i <= N; i ++)
		Result[0][i] = 1e18, Result[N + 1][i] = 1e18, Result[i][0] = 1e18, Result[i][N + 1] = 1e18;
	for (int i = 1; i <= N * N - 1; i ++)
	{
		Result[X][Y] = i;
		if (Result[X + dx[Sd]][Y + dy[Sd]]) Sd = (Sd + 1) % 4;
		X += dx[Sd], Y += dy[Sd];
	}

	for (int i = 1; i <= N; i ++)
	{
		for (int j = 1; j <= N; j ++)
			if ((1 + N >> 1) == i && i == j)
				cout << "T ";
			else
				cout << Result[i][j] << " ";
		cout << endl;
	}

	return 0;
}

E - Non-Decreasing Colorful Path

Problem Statement

There is a connected undirected graph with N N N vertices and M M M edges, where the i i i-th edge connects vertex U i U_i Ui? and vertex V i V_i Vi? bidirectionally.
Each vertex has an integer written on it, with integer A v A_v Av? written on vertex v v v.

For a simple path from vertex 1 1 1 to vertex N N N (a path that does not pass through the same vertex multiple times), the score is determined as follows:

  • Let S S S be the sequence of integers written on the vertices along the path, listed in the order they are visited.
  • If S S S is not non-decreasing, the score of that path is 0 0 0.
  • Otherwise, the score is the number of distinct integers in S S S.

Find the path from vertex 1 1 1 to vertex N N N with the highest score among all simple paths and print that score.

What does it mean for S S S to be non-decreasing? A sequence S = ( S 1 , S 2 , … , S l ) S=(S_1,S_2,\dots,S_l) S=(S1?,S2?,,Sl?) of length l l l is said to be non-decreasing if and only if S i ≤ S i + 1 S_i \le S_{i+1} Si?Si+1? for all integers 1 ≤ i < l 1 \le i < l 1i<l.

Constraints

  • All input values are integers.
  • 2 ≤ N ≤ 2 × 1 0 5 2 \le N \le 2 \times 10^5 2N2×105
  • N ? 1 ≤ M ≤ 2 × 1 0 5 N-1 \le M \le 2 \times 10^5 N?1M2×105
  • 1 ≤ A i ≤ 2 × 1 0 5 1 \le A_i \le 2 \times 10^5 1Ai?2×105
  • The graph is connected.
  • 1 ≤ U i < V i ≤ N 1 \le U_i < V_i \le N 1Ui?<Vi?N
  • ( U i , V i ) ≠ ( U j , V j ) (U_i,V_i) \neq (U_j,V_j) (Ui?,Vi?)=(Uj?,Vj?) if i ≠ j i \neq j i=j.

Input

The input is given from Standard Input in the following format:

N N N M M M
A 1 A_1 A1? A 2 A_2 A2? … \dots A N A_N AN?
U 1 U_1 U1? V 1 V_1 V1?
U 2 U_2 U2? V 2 V_2 V2?
? \vdots ?
U M U_M UM? V M V_M VM?

Output

Print the answer as an integer.

Sample Input 1

5 6
10 20 30 40 50
1 2
1 3
2 5
3 4
3 5
4 5

Sample Output 1

4

The path 1 → 3 → 4 → 5 1 \rightarrow 3 \rightarrow 4 \rightarrow 5 1345 has S = ( 10 , 30 , 40 , 50 ) S=(10,30,40,50) S=(10,30,40,50) for a score of 4 4 4, which is the maximum.

Sample Input 2

4 5
1 10 11 4
1 2
1 3
2 3
2 4
3 4

Sample Output 2

0

There is no simple path from vertex 1 1 1 to vertex N N N such that S S S is non-decreasing. In this case, the maximum score is 0 0 0.

Sample Input 3

10 12
1 2 3 3 4 4 4 6 5 7
1 3
2 9
3 4
5 6
1 2
8 9
4 5
8 10
7 10
4 6
2 8
6 7

Sample Output 3

5

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef pair<int, PII> PIII;

const int SIZE = 2e5 + 10;

int N, M, A[SIZE], P[SIZE], F[SIZE];
std::vector<PIII> Edge;
std::vector<int> G[SIZE];
int Vis[SIZE];
vector<int> Point;

int Find(int x)
{
	if (P[x] != x) P[x] = Find(P[x]);
	return P[x];
}

void BFS()
{
	queue<int> Q;
	Q.push(Find(1));

	while (Q.size())
	{
		int u = Q.front();
		Q.pop();

		if (Vis[u]) continue;
		Vis[u] = 1;
		Point.push_back(u);

		for (auto c : G[u])
			Q.push(c);
	}
}

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> N >> M;

	for (int i = 1; i <= N; i ++)
		cin >> A[i], P[i] = i;

	int u, v;
	for (int i = 1; i <= M; i ++)
	{
		cin >> u >> v;
		if (A[u] > A[v]) swap(u, v);
		if (A[u] == A[v]) P[Find(v)] = Find(u);
		else Edge.push_back({A[u], {u, v}});
	}

	// for (auto c : Edge)
	// 	G[Find(c.first)].push_back(Find(c.second));

	// BFS();

	sort(Edge.begin(), Edge.end());

	memset(F, -0x3f, sizeof F);
	F[Find(1)] = 1;
	for (auto c : Edge)
	{
		int u = Find(c.second.first), v = Find(c.second.second);
		F[v] = max(F[v], F[u] + 1);
	}

	cout << max(0ll, F[Find(N)]) << endl;

	return 0;
}

F - Hop Sugoroku

Problem Statement

There is a row of N N N squares labeled 1 , 2 , … , N 1,2,\dots,N 1,2,,N and a sequence A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\dots,A_N) A=(A1?,A2?,,AN?) of length N N N.
Initially, square 1 1 1 is painted black, the other N ? 1 N-1 N?1 squares are painted white, and a piece is placed on square 1 1 1.

You may repeat the following operation any number of times, possibly zero:

  • When the piece is on square i i i, choose a positive integer x x x and move the piece to square i + A i × x i + A_i \times x i+Ai?×x.
    • Here, you cannot make a move with i + A i × x > N i + A_i \times x > N i+Ai?×x>N.
  • Then, paint the square i + A i × x i + A_i \times x i+Ai?×x black.

Find the number of possible sets of squares that can be painted black at the end of the operations, modulo 998244353 998244353 998244353.

Constraints

  • All input values are integers.
  • 1 ≤ N ≤ 2 × 1 0 5 1 \le N \le 2 \times 10^5 1N2×105
  • 1 ≤ A i ≤ 2 × 1 0 5 1 \le A_i \le 2 \times 10^5 1Ai?2×105

Input

The input is given from Standard Input in the following format:

N N N
A 1 A_1 A1? A 2 A_2 A2? … \dots A N A_N AN?

Output

Print the answer as an integer.

Sample Input 1

5
1 2 3 1 1

Sample Output 1

8

There are eight possible sets of squares painted black:

  • Square 1 1 1
  • Squares 1 , 2 1,2 1,2
  • Squares 1 , 2 , 4 1,2,4 1,2,4
  • Squares 1 , 2 , 4 , 5 1,2,4,5 1,2,4,5
  • Squares 1 , 3 1,3 1,3
  • Squares 1 , 4 1,4 1,4
  • Squares 1 , 4 , 5 1,4,5 1,4,5
  • Squares 1 , 5 1,5 1,5

Sample Input 2

1
200000

Sample Output 2

1

Sample Input 3

40
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sample Output 3

721419738

Be sure to find the number modulo 998244353 998244353 998244353.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define int long long

using namespace std;

typedef pair<int, int> PII;

const int SIZE = 2e5 + 10, SIZE2 = 450, MOD = 998244353;

int N;
int A[SIZE];
int F[SIZE], G[SIZE2][SIZE2];

signed main()
{
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> N;

	for (int i = 1; i <= N; i ++)
		cin >> A[i];

	F[1] = 1;
	int B = sqrt(N) + 1;
	for (int i = 1; i <= N; i ++)
	{
		for (int j = 1; j <= B; j ++)
			F[i] = (F[i] + G[j][i % j]) % MOD;
		if (A[i] > B)
			for (int j = i + A[i]; j <= N; j += A[i])
				F[j] = (F[j] + F[i]) % MOD;
		else
			G[A[i]][i % A[i]] = (G[A[i]][i % A[i]] + F[i]) % MOD;
	}

	int Result = 0;
	for (int i = 1; i <= N; i ++)
		Result = (Result + F[i]) % MOD;

	cout << Result << endl;

	return 0;
}

视频题解

Atcoder Beginner Contest 335 讲解(A - F题)


最后祝大家早日在这里插入图片描述

文章来源:https://blog.csdn.net/weixin_66946161/article/details/135445264
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。