gradient_checkpointing

发布时间:2024年01月09日

点评:本质是减少内存消耗的一种方式,以时间或者计算换内存

gradient_checkpointing(梯度检查点)是一种用于减少深度学习模型中内存消耗的技术。在训练深度神经网络时,反向传播算法需要在前向传播和反向传播之间存储中间计算结果,以便计算梯度并更新模型参数。这些中间结果的存储会占用大量的内存,特别是当模型非常深或参数量很大时。

梯度检查点技术通过在前向传播期间临时丢弃一些中间结果,仅保留必要的信息,以减少内存使用量。在反向传播过程中,只需要重新计算被丢弃的中间结果,而不需要存储所有的中间结果,从而节省内存空间。

实现梯度检查点的一种常见方法是将某些层或操作标记为检查点。在前向传播期间,被标记为检查点的层将计算并缓存中间结果。然后,在反向传播过程中,这些层将重新计算其所需的中间结果,以便计算梯度。

以下是一种简单的实现梯度检查点的伪代码:

```
for input, target in training_data:
    # Forward pass
    x1 = layer1.forward(input)
    x2 = layer2.forward(x1)
    x3 = checkpoint(layer3, x2)  # Apply checkpointing on layer3
    x4 = layer4.forward(x3)
    output = layer5.forward(x4)
    
    # Compute loss and gradient
    loss = compute_loss(output, target)
    gradient = compute_gradient(l

文章来源:https://blog.csdn.net/andeyeluguo/article/details/135490734
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。