Langchain-Chatchat开源库使用的随笔记(一)

发布时间:2023年12月31日

笔者最近在研究Langchain-Chatchat,所以本篇作为随笔记进行记录。
最近核心探索的是知识库的使用,其中关于文档如何进行分块的详细,可以参考笔者的另几篇文章:

原项目地址:

在这里插入图片描述


1 Chatchat项目结构

整个结构是server 启动API,然后项目内自行调用API。
API详情可见:http://xxx:7861/docs ,整个代码架构还是蛮适合深入学习

在这里插入图片描述


2 Chatchat一些代码学习

2.1 12个分块函数统一使用

截止 20231231 笔者看到chatchat一共有12个分chunk的函数:

CharacterTextSplitter
LatexTextSplitter
MarkdownHeaderTextSplitter
MarkdownTextSplitter
NLTKTextSplitter
PythonCodeTextSplitter
RecursiveCharacterTextSplitter
SentenceTransformersTokenTextSplitter
SpacyTextSplitter

AliTextSplitter
ChineseRecursiveTextSplitter
ChineseTextSplitter

借用chatchat项目中的test/custom_splitter/test_different_splitter.py来看看一起调用make_text_splitter函数:


from langchain import document_loaders
from server.knowledge_base.utils import make_text_splitter

# 使用DocumentLoader读取文件
filepath = "knowledge_base/samples/content/test_files/test.txt"
loader = document_loaders.UnstructuredFileLoader(filepath, autodetect_encoding=True)
docs = loader.load()

CHUNK_SIZE = 250
OVERLAP_SIZE = 50

splitter_name = 'AliTextSplitter'
text_splitter = make_text_splitter(splitter_name, CHUNK_SIZE, OVERLAP_SIZE)
if splitter_name == "MarkdownHeaderTextSplitter":
    docs = text_splitter.split_text(docs[0].page_content)
    for doc in docs:
        if doc.metadata:
            doc.metadata["source"] = os.path.basename(filepath)
else:
    docs = text_splitter.split_documents(docs)
for doc in docs:
    print(doc)


3 知识库相关实践问题

3.1 .md格式的文件 支持非常差

我们在configs/kb_config.py可以看到:

# TextSplitter配置项,如果你不明白其中的含义,就不要修改。
text_splitter_dict = {
    "ChineseRecursiveTextSplitter": {
        "source": "huggingface",   # 选择tiktoken则使用openai的方法
        "tokenizer_name_or_path": "",
    },
    "SpacyTextSplitter": {
        "source": "huggingface",
        "tokenizer_name_or_path": "gpt2",
    },
    "RecursiveCharacterTextSplitter": {
        "source": "tiktoken",
        "tokenizer_name_or_path": "cl100k_base",
    },
    "MarkdownHeaderTextSplitter": {
        "headers_to_split_on":
            [
                ("#", "head1"),
                ("##", "head2"),
                ("###", "head3"),
                ("####", "head4"),
            ]
    },
}

# TEXT_SPLITTER 名称
TEXT_SPLITTER_NAME = "ChineseRecursiveTextSplitter"

chatchat看上去创建新知识库的时候,仅支持一个知识库一个TEXT_SPLITTER_NAME 的方法,并不能做到不同的文件,使用不同的切块模型。
所以如果要一个知识库内,不同文件使用不同的切分方式,需要自己改整个结构代码;然后重启项目

同时,chatchat项目对markdown的源文件,支持非常差,我们来看看:

from langchain import document_loaders
from server.knowledge_base.utils import make_text_splitter

# 载入
filepath = "matt/智能XXX.md"
loader = document_loaders.UnstructuredFileLoader(filepath,autodetect_encoding=True)
docs = loader.load()

# 切分
splitter_name = 'ChineseRecursiveTextSplitter'
text_splitter = make_text_splitter(splitter_name, CHUNK_SIZE, OVERLAP_SIZE)
if splitter_name == "MarkdownHeaderTextSplitter":
    docs = text_splitter.split_text(docs[0].page_content)
    for doc in docs:
        if doc.metadata:
            doc.metadata["source"] = os.path.basename(filepath)
else:
    docs = text_splitter.split_documents(docs)
for doc in docs:
    print(doc)


首先chatchat对.md文件读入使用的是UnstructuredFileLoader,但是没有加mode="elements"(参考:LangChain:万能的非结构化文档载入详解(一)
所以,你可以认为,读入后,#会出现丢失,于是你即使选择了MarkdownHeaderTextSplitter,也还是无法使用。
目前来看,不建议上传.md格式的文档,比较好的方法是:

  • 文件改成 doc,可以带# / ## / ###
  • 更改configs/kb_config.py当中的TEXT_SPLITTER_NAME = "MarkdownHeaderTextSplitter"
文章来源:https://blog.csdn.net/sinat_26917383/article/details/135317522
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。