C++类与对象【多态】

发布时间:2024年01月21日

在这里插入图片描述
在这里插入图片描述

🌈个人主页:godspeed_lucip
🔥 系列专栏:C++从基础到进阶



🎄1 多态

🍕1.1 多态的基本概念

多态是C++面向对象三大特性之一

多态分为两类

  • 静态多态: 函数重载 和 运算符重载属于静态多态,复用函数名
  • 动态多态: 派生类和虚函数实现运行时多态

静态多态和动态多态区别:

  • 静态多态的函数地址早绑定 - 编译阶段确定函数地址
  • 动态多态的函数地址晚绑定 - 运行阶段确定函数地址

下面通过案例进行讲解多态

class Animal
{
public:
	//Speak函数就是虚函数
	//函数前面加上virtual关键字,变成虚函数,那么编译器在编译的时候就不能确定函数调用了,只有在运行时,根据传入的对象来确定要调用哪个子类的函数。这样就实现了地址晚绑定
	virtual void speak() //如果不加virtual关键字,那么下面的test01()函数的运行结果就是“动物在说话”
	{
		cout << "动物在说话" << endl;
	}
};

class Cat :public Animal
{
public:
	void speak() //子类重写父类的函数,可加virtual关键字,也可不加。
        //virtual void speak(){}的效果是一样的
	{
		cout << "小猫在说话" << endl;
	}
};

class Dog :public Animal
{
public:

	void speak()
	{
		cout << "小狗在说话" << endl;
	}

};
//我们希望传入什么对象,那么就调用什么对象的函数
//如果函数地址在编译阶段就能确定,那么静态联编,也就是地址澡绑定
//如果函数地址在运行阶段才能确定,就是动态联编,也就是地址晚绑定

void DoSpeak(Animal & animal) 
{
	animal.speak();
}
//
//多态满足条件: 
//1、有继承关系
//2、子类重写父类中的虚函数
//多态使用:
//父类指针或引用指向子类对象(体现在doSpeak()函数中)

void test01()
{
	Cat cat;
	DoSpeak(cat); //等价于Animal &animal = cat(父类指针指向子类对象)


	Dog dog;
	DoSpeak(dog);
}


int main() {

	test01();

	system("pause");

	return 0;
}

总结:

多态满足条件

  • 有继承关系
  • 子类重写父类中的虚函数

多态使用条件

  • 父类指针或引用指向子类对象

重写:函数返回值类型 函数名 参数列表 完全一致称为重写

注意和重载的区别:重载是函数名相同,参数列表不同,返回值可同可不同

🍕1.2 多态案例一-计算器类

案例描述:

分别利用普通写法和多态技术,设计实现两个操作数进行运算的计算器类

多态的优点:

  • 代码组织结构清晰
  • 可读性强
  • 利于前期和后期的扩展以及维护

示例:

//普通实现
class Calculator {
public:
	int getResult(string oper)
	{
		if (oper == "+") {
			return m_Num1 + m_Num2;
		}
		else if (oper == "-") {
			return m_Num1 - m_Num2;
		}
		else if (oper == "*") {
			return m_Num1 * m_Num2;
		}
		//如果要提供新的运算,需要修改源码
	}
public:
	int m_Num1;
	int m_Num2;
};

void test01()
{
	//普通实现测试
	Calculator c;
	c.m_Num1 = 10;
	c.m_Num2 = 10;
	cout << c.m_Num1 << " + " << c.m_Num2 << " = " << c.getResult("+") << endl;

	cout << c.m_Num1 << " - " << c.m_Num2 << " = " << c.getResult("-") << endl;

	cout << c.m_Num1 << " * " << c.m_Num2 << " = " << c.getResult("*") << endl;
}



//多态实现
//抽象计算器类
//多态优点:代码组织结构清晰,可读性强,利于前期和后期的扩展以及维护
class AbstractCalculator
{
public :

	virtual int getResult()
	{
		return 0;
	}

	int m_Num1;
	int m_Num2;
};

//加法计算器
class AddCalculator :public AbstractCalculator
{
public:
	int getResult()
	{
		return m_Num1 + m_Num2;
	}
};

//减法计算器
class SubCalculator :public AbstractCalculator
{
public:
	int getResult()
	{
		return m_Num1 - m_Num2;
	}
};

//乘法计算器
class MulCalculator :public AbstractCalculator
{
public:
	int getResult()
	{
		return m_Num1 * m_Num2;
	}
};


void test02()
{
	//创建加法计算器
	AbstractCalculator *abc = new AddCalculator;
    //必须是以指针的形式创建,假如写成 AbstractCalculator abc = AddCalculator();会执行父类的getResult()函数
    
	abc->m_Num1 = 10;
	abc->m_Num2 = 10;
	cout << abc->m_Num1 << " + " << abc->m_Num2 << " = " << abc->getResult() << endl;
	delete abc;  //用完了记得销毁

	//创建减法计算器
	abc = new SubCalculator; //delete操作只是把堆区的数据删除,但是并没有销毁指针,因此可以直接使用指针指向一个新的对象
	abc->m_Num1 = 10;
	abc->m_Num2 = 10;
	cout << abc->m_Num1 << " - " << abc->m_Num2 << " = " << abc->getResult() << endl;
	delete abc;  

	//创建乘法计算器
	abc = new MulCalculator;
	abc->m_Num1 = 10;
	abc->m_Num2 = 10;
	cout << abc->m_Num1 << " * " << abc->m_Num2 << " = " << abc->getResult() << endl;
	delete abc;
}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}

总结:C++开发提倡利用多态设计程序架构,因为多态优点很多

🍕1.3 纯虚函数和抽象类

在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容

因此可以将虚函数改为纯虚函数

纯虚函数语法:virtual 返回值类型 函数名 (参数列表)= 0 ;

当类中有了纯虚函数,这个类也称为抽象类

抽象类特点

  • 无法实例化对象
  • 子类必须重写抽象类中的纯虚函数,否则也属于抽象类

示例:

class Base
{
public:
	//纯虚函数
	//类中只要有一个纯虚函数就称为抽象类
	//抽象类无法实例化对象
	//子类必须重写父类中的纯虚函数,否则也属于抽象类
	virtual void func() = 0;
};

class Son :public Base
{
public:
	virtual void func() 
	{
		cout << "func调用" << endl;
	};
};

void test01()
{
	Base * base = NULL;
	//base = new Base; // 错误,抽象类无法实例化对象
	base = new Son;
	base->func();
	delete base;//记得销毁
}

int main() {

	test01();

	system("pause");

	return 0;
}
🍕1.4 多态案例二-制作饮品

案例描述:

制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料

利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶

在这里插入图片描述

示例:

//抽象制作饮品
class AbstractDrinking {
public:
	//烧水
	virtual void Boil() = 0;
	//冲泡
	virtual void Brew() = 0;
	//倒入杯中
	virtual void PourInCup() = 0;
	//加入辅料
	virtual void PutSomething() = 0;
	//规定流程
	void MakeDrink() {
		Boil();
		Brew();
		PourInCup();
		PutSomething();
	}
};

//制作咖啡
class Coffee : public AbstractDrinking {
public:
	//烧水
	virtual void Boil() {
		cout << "煮农夫山泉!" << endl;
	}
	//冲泡
	virtual void Brew() {
		cout << "冲泡咖啡!" << endl;
	}
	//倒入杯中
	virtual void PourInCup() {
		cout << "将咖啡倒入杯中!" << endl;
	}
	//加入辅料
	virtual void PutSomething() {
		cout << "加入牛奶!" << endl;
	}
};

//制作茶水
class Tea : public AbstractDrinking {
public:
	//烧水
	virtual void Boil() {
		cout << "煮自来水!" << endl;
	}
	//冲泡
	virtual void Brew() {
		cout << "冲泡茶叶!" << endl;
	}
	//倒入杯中
	virtual void PourInCup() {
		cout << "将茶水倒入杯中!" << endl;
	}
	//加入辅料
	virtual void PutSomething() {
		cout << "加入枸杞!" << endl;
	}
};

//业务函数
void DoWork(AbstractDrinking* drink) {
	drink->MakeDrink();
	delete drink;
}

void test01() {
	DoWork(new Coffee);
	cout << "--------------" << endl;
	DoWork(new Tea);
}


int main() {

	test01();

	system("pause");

	return 0;
}
🍕1.5 虚析构和纯虚析构

多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码

解决方式:将父类中的析构函数改为虚析构或者纯虚析构

虚析构和纯虚析构共性:

  • 可以解决父类指针无法释放子类对象的问题
  • 都需要有具体的函数实现

虚析构和纯虚析构区别:

  • 如果是纯虚析构,该类属于抽象类,无法实例化对象

虚析构语法:

virtual ~类名(){}

纯虚析构语法:

virtual ~类名() = 0;

类名::~类名(){}

示例:

class Animal {
public:

	Animal()
	{
		cout << "Animal 构造函数调用!" << endl;
	}
	virtual void Speak() = 0;

	//析构函数加上virtual关键字,变成虚析构函数
	//virtual ~Animal()
	//{
	//	cout << "Animal虚析构函数调用!" << endl;
	//}


	virtual ~Animal() = 0; //纯虚析构函数的声明。使用虚析构函数(virtual),就可以执行子类的析构函数
};

//注意:不管是虚析构函数还是纯虚析构函数。都需要具体的实现,不可以仅仅写成virtual ~Animal() = 0,因为父类也会开辟堆区内存,同样也需要进行内存释放:
Animal::~Animal() //纯虚析构函数的实现。
{
	cout << "Animal 纯虚析构函数调用!" << endl;
}

//和包含普通纯虚函数的类一样,包含了纯虚析构函数的类也是一个抽象类。不能够被实例化。

class Cat : public Animal {
public:
	Cat(string name)
	{
		cout << "Cat构造函数调用!" << endl;
		m_Name = new string(name);
	}
	virtual void Speak()
	{
		cout << *m_Name <<  "小猫在说话!" << endl;
	}
	~Cat()
	{
		cout << "Cat析构函数调用!" << endl;
		if (this->m_Name != NULL) {
			delete m_Name;
			m_Name = NULL;
		}
	}

public:
	string *m_Name;
};

void test01()
{
	Animal *animal = new Cat("Tom");
	animal->Speak();

	//通过父类指针去释放,会导致子类对象可能清理不干净,造成内存泄漏
	//怎么解决?给基类增加一个虚析构函数
	//虚析构函数就是用来解决通过父类指针释放子类对象
	delete animal; //假如不使用虚析构函数,就只会运行delete animal,也就是只执行了父类的析构函数,子类的析构函数得不到执行,就会导致子类的数据得不到释放,就会造成内存泄露
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

? 1. 虚析构或纯虚析构就是用来解决通过父类指针释放子类对象

? 2. 如果子类中没有堆区数据,可以不写为虚析构或纯虚析构

? 3. 拥有纯虚析构函数的类也属于抽象类

注意:由于本例中,子类中存在一些开辟到堆区的属性(*name),因此必须要运行子类的析构函数,假如仅仅是多态,是运行不到的;此时才需要父类的纯虚构函数。否则是没有必要写纯析构函数的

🍕1.6 多态案例三-电脑组装

案例描述:

电脑主要组成部件为 CPU(用于计算),显卡(用于显示),内存条(用于存储)

将每个零件封装出抽象基类,并且提供不同的厂商生产不同的零件,例如Intel厂商和Lenovo厂商

创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口

测试时组装三台不同的电脑进行工作

示例:

#include<iostream>
using namespace std;

//抽象CPU类
class CPU
{
public:
	//抽象的计算函数
	virtual void calculate() = 0;
};

//抽象显卡类
class VideoCard
{
public:
	//抽象的显示函数
	virtual void display() = 0;
};

//抽象内存条类
class Memory
{
public:
	//抽象的存储函数
	virtual void storage() = 0;
};

//电脑类
class Computer
{
public:
	Computer(CPU * cpu, VideoCard * vc, Memory * mem)
	{
		m_cpu = cpu;
		m_vc = vc;
		m_mem = mem;
	}

	//提供工作的函数
	void work()
	{
		//让零件工作起来,调用接口
		m_cpu->calculate();

		m_vc->display();

		m_mem->storage();
	}

	//提供析构函数 释放3个电脑零件
	~Computer()
	{

		//释放CPU零件
		if (m_cpu != NULL)
		{
			delete m_cpu;
			m_cpu = NULL;
		}

		//释放显卡零件
		if (m_vc != NULL)
		{
			delete m_vc;
			m_vc = NULL;
		}

		//释放内存条零件
		if (m_mem != NULL)
		{
			delete m_mem;
			m_mem = NULL;
		}
	}

private:

	CPU * m_cpu; //CPU的零件指针
	VideoCard * m_vc; //显卡零件指针
	Memory * m_mem; //内存条零件指针
};

//具体厂商
//Intel厂商
class IntelCPU :public CPU
{
public:
	virtual void calculate()
	{
		cout << "Intel的CPU开始计算了!" << endl;
	}
};

class IntelVideoCard :public VideoCard
{
public:
	virtual void display()
	{
		cout << "Intel的显卡开始显示了!" << endl;
	}
};

class IntelMemory :public Memory
{
public:
	virtual void storage()
	{
		cout << "Intel的内存条开始存储了!" << endl;
	}
};

//Lenovo厂商
class LenovoCPU :public CPU
{
public:
	virtual void calculate()
	{
		cout << "Lenovo的CPU开始计算了!" << endl;
	}
};

class LenovoVideoCard :public VideoCard
{
public:
	virtual void display()
	{
		cout << "Lenovo的显卡开始显示了!" << endl;
	}
};

//如果将上面的几个类一起写为:
//class Lenove: public CPU, public VideoCard, public Memory{
//	public:
//		void calculate(){
//			cout<<"Lenove's CPU"<<endl;
//		}
//		void display(){
//			cout<<"Lenove's VideoCard"<<endl;
//		}
//		void storagy(){
//			cout<<"Lenove's Memory"<<endl;
//		}
//};
//且测试函数里面写为:
//CPU *LenoveCPU = new Lenove;
//	VideoCard *LenoveVC = new Lenove;
//	Memory *LenoveMem = new Lenove;
//就会出错,原因尚不清除,但是是内存错误

class LenovoMemory :public Memory
{
public:
	virtual void storage()
	{
		cout << "Lenovo的内存条开始存储了!" << endl;
	}
};


void test01()
{
	//第一台电脑零件
	CPU * intelCpu = new IntelCPU;
	VideoCard * intelCard = new IntelVideoCard;
	Memory * intelMem = new IntelMemory;

	cout << "第一台电脑开始工作:" << endl;
	//创建第一台电脑
	Computer * computer1 = new Computer(intelCpu, intelCard, intelMem);
	computer1->work();
	delete computer1; //在释放第一台电脑的时候,只会把Computer的数据释放,零件的内容得不到释放,因此需要在Computer的析构函数中将零件全部释放干净

	cout << "-----------------------" << endl;
	cout << "第二台电脑开始工作:" << endl;
	//第二台电脑组装
	Computer * computer2 = new Computer(new LenovoCPU, new LenovoVideoCard, new LenovoMemory);;
	computer2->work();
	delete computer2;

	cout << "-----------------------" << endl;
	cout << "第三台电脑开始工作:" << endl;
	//第三台电脑组装
	Computer * computer3 = new Computer(new LenovoCPU, new IntelVideoCard, new LenovoMemory);;
	computer3->work();
	delete computer3;

}

🕮2 总结

在代码的舞台上,C++翩翩起舞。

纵观代码的山川大地,无边的可能在眼前延展, C++,是智慧的风,吹动着科技的帆船。

用韵律的二进制,谱写着自由的交响曲, C++,是数字艺术的荣光,闪烁在信息的星空。

愿C++永远如诗,激励创造者的灵感。

渴望挑战C++的学习路径和掌握进阶技术?不妨点击下方链接,一同探讨更多C++的奇迹吧。我们推出了引领趋势的💻C++专栏:《C++从基础到进阶》 ,旨在深度探索C++的实际应用和创新。🌐🔍

在这里插入图片描述

在这里插入图片描述

文章来源:https://blog.csdn.net/m0_51574586/article/details/135727557
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。