代码随想录算法训练营第十八天 | 前中后序构造二叉树

发布时间:2023年12月17日

目录

力扣题目

力扣题目记录

513.找树左下角的值

递归

迭代法

总结

112.?路径总和

106.从中序与后序遍历序列构造二叉树

总结


力扣题目

用时:2h

1、513.找树左下角的值

2、112. 路径总和

3、106.从中序与后序遍历序列构造二叉树


力扣题目记录

513.找树左下角的值

? ? ? ? 这道题依然可以用递归和迭代两种方法来做,与以往不同的是,这道题用迭代会更简单一些

递归

如果使用递归法,如何判断是最后一行呢,其实就是深度最大的叶子节点一定是最后一行。

所以要找深度最大的叶子节点。

那么如何找最左边的呢?可以使用前序遍历(当然中序,后序都可以,因为本题没有 中间节点的处理逻辑,只要左优先就行),保证优先左边搜索,然后记录深度最大的叶子节点,此时就是树的最后一行最左边的值。

递归三部曲:

  • 确定递归函数的参数和返回值

参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。

本题还需要类里的两个全局变量,maxLen用来记录最大深度,result记录最大深度最左节点的数值。

代码如下:

int maxDepth = INT_MIN;   // 全局变量 记录最大深度
int result;       // 全局变量 最大深度最左节点的数值
void traversal(TreeNode* root, int depth)
  • 确定终止条件

当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

代码如下:

if (root->left == NULL && root->right == NULL) {
    if (depth > maxDepth) {
        maxDepth = depth;           // 更新最大深度
        result = root->val;   // 最大深度最左面的数值
    }
    return;
}
  • 确定单层递归的逻辑

在找最大深度的时候,递归的过程中依然要使用回溯,代码如下:

                    // 中
if (root->left) {   // 左
    depth++; // 深度加一
    traversal(root->left, depth);
    depth--; // 回溯,深度减一
}
if (root->right) { // 右
    depth++; // 深度加一
    traversal(root->right, depth);
    depth--; // 回溯,深度减一
}
return;

完整代码如下:

class Solution {
public:
    int maxDepth = INT_MIN;
    int result;
    void traversal(TreeNode* root, int depth) {
        if (root->left == NULL && root->right == NULL) {
            if (depth > maxDepth) {
                maxDepth = depth;
                result = root->val;
            }
            return;
        }
        if (root->left) {
            depth++;
            traversal(root->left, depth);
            depth--; // 回溯
        }
        if (root->right) {
            depth++;
            traversal(root->right, depth);
            depth--; // 回溯
        }
        return;
    }
    int findBottomLeftValue(TreeNode* root) {
        traversal(root, 0);
        return result;
    }
};

当然回溯的地方可以精简,精简代码如下:

class Solution {
public:
    int maxDepth = INT_MIN;
    int result;
    void traversal(TreeNode* root, int depth) {
        if (root->left == NULL && root->right == NULL) {
            if (depth > maxDepth) {
                maxDepth = depth;
                result = root->val;
            }
            return;
        }
        if (root->left) {
            traversal(root->left, depth + 1); // 隐藏着回溯
        }
        if (root->right) {
            traversal(root->right, depth + 1); // 隐藏着回溯
        }
        return;
    }
    int findBottomLeftValue(TreeNode* root) {
        traversal(root, 0);
        return result;
    }
};

迭代法

本题使用层序遍历再合适不过了,比递归要好理解得多!

只需要记录最后一行第一个节点的数值就可以了。

代码如下:

class Solution {
public:
    int findBottomLeftValue(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (i == 0) result = node->val; // 记录最后一行第一个元素
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

总结

本题涉及如下几点:


112.?路径总和

可以使用深度优先遍历的方式(本题前中后序都可以,无所谓,因为中节点也没有处理逻辑)来遍历二叉树

  • 确定递归函数的参数和返回类型

参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。

再来看返回值,递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。 (这种情况我们在236. 二叉树的最近公共祖先?(opens new window)中介绍)
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)

而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?

如图所示:

112.路径总和

图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。

所以代码如下:

bool traversal(treenode* cur, int count)   // 注意函数的返回类型
  • 确定终止条件

首先计数器如何统计这一条路径的和呢?

不要去累加然后判断是否等于目标和,那么代码比较麻烦,可以用递减,让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。

如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。

如果遍历到了叶子节点,count不为0,就是没找到。

递归终止条件代码如下:

if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点而没有找到合适的边,直接返回
  • 确定单层递归的逻辑

因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。

递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。

代码如下:

if (cur->left) { // 左 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->left, count - cur->left->val)) return true; // 注意这里有回溯的逻辑
}
if (cur->right) { // 右 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->right, count - cur->right->val)) return true; // 注意这里有回溯的逻辑
}
return false;

以上代码中是包含着回溯的,没有回溯,如何后撤重新找另一条路径呢。

回溯隐藏在traversal(cur->left, count - cur->left->val)这里, 因为把count - cur->left->val?直接作为参数传进去,函数结束,count的数值没有改变。

为了把回溯的过程体现出来,可以改为如下代码:

if (cur->left) { // 左
    count -= cur->left->val; // 递归,处理节点;
    if (traversal(cur->left, count)) return true;
    count += cur->left->val; // 回溯,撤销处理结果
}
if (cur->right) { // 右
    count -= cur->right->val;
    if (traversal(cur->right, count)) return true;
    count += cur->right->val;
}
return false;

整体代码如下:

class Solution {
private:
    bool traversal(TreeNode* cur, int count) {
        if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
        if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回

        if (cur->left) { // 左
            count -= cur->left->val; // 递归,处理节点;
            if (traversal(cur->left, count)) return true;
            count += cur->left->val; // 回溯,撤销处理结果
        }
        if (cur->right) { // 右
            count -= cur->right->val; // 递归,处理节点;
            if (traversal(cur->right, count)) return true;
            count += cur->right->val; // 回溯,撤销处理结果
        }
        return false;
    }

public:
    bool hasPathSum(TreeNode* root, int sum) {
        if (root == NULL) return false;
        return traversal(root, sum - root->val);
    }
};

以上代码精简之后如下:

class Solution {
public:
    bool hasPathSum(TreeNode* root, int sum) {
        if (!root) return false;
        if (!root->left && !root->right && sum == root->val) {
            return true;
        }
        return hasPathSum(root->left, sum - root->val) || hasPathSum(root->right, sum - root->val);
    }
};

106.从中序与后序遍历序列构造二叉树

使用递归来做的话,可以分为以下几步:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

完整代码如下:

class Solution {
private:
    TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0) return NULL;

        // 后序遍历数组最后一个元素,就是当前的中间节点
        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);

        // 叶子节点
        if (postorder.size() == 1) return root;

        // 找到中序遍历的切割点
        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }

        // 切割中序数组
        // 左闭右开区间:[0, delimiterIndex)
        vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
        // [delimiterIndex + 1, end)
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );

        // postorder 舍弃末尾元素
        postorder.resize(postorder.size() - 1);

        // 切割后序数组
        // 依然左闭右开,注意这里使用了左中序数组大小作为切割点
        // [0, leftInorder.size)
        vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
        // [leftInorder.size(), end)
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());

        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        return traversal(inorder, postorder);
    }
};

此时应该发现了,如上的代码性能并不好,因为每层递归定义了新的vector(就是数组),既耗时又耗空间,但上面的代码是最好理解的,为了方便读者理解,所以用如上的代码来讲解。

下面给出用下标索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下标索引来分割)

class Solution {
private:
    // 中序区间:[inorderBegin, inorderEnd),后序区间[postorderBegin, postorderEnd)
    TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {
        if (postorderBegin == postorderEnd) return NULL;

        int rootValue = postorder[postorderEnd - 1];
        TreeNode* root = new TreeNode(rootValue);

        if (postorderEnd - postorderBegin == 1) return root;

        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue) break;
        }
        // 切割中序数组
        // 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;

        // 切割后序数组
        // 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)
        int leftPostorderBegin =  postorderBegin;
        int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size
        // 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)
        int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);
        int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了

        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);

        return root;
    }
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0) return NULL;
        // 左闭右开的原则
        return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
    }
};

?具体过程如果有问题,可以参考

参考:代码随想录


总结

  1. 对深度、高度理解加深

  2. 对回溯理解加深

  3. 学会了用中后序构造二叉树

  4. 5个题只做了3个,需要二刷

  5. 层次遍历有些忘了,需要及时复习?

文章来源:https://blog.csdn.net/Fight___/article/details/135045005
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。