代码随想录第十八天 513 找树左下角的值 112 路径之和 106 从中序与后序遍历序列构造二叉树

发布时间:2024年01月21日

LeetCode 513 找树左下角的值?

题目描述

给定一个二叉树的?根节点?root,请找出该二叉树的?最底层?最左边?节点的值。

假设二叉树中至少有一个节点。

示例 1:

输入: root = [2,1,3]
输出: 1

示例 2:

输入: [1,2,3,4,null,5,6,null,null,7]
输出: 7

思路?

?????1.确定递归函数的参数和返回值

参数必须有要遍历的树的根节点,还有就是一个int型的变量用来记录最长深度。 这里就不需要返回值了,所以递归函数的返回类型为void。

本题还需要类里的两个全局变量,maxLen用来记录最大深度,result记录最大深度最左节点的数值。

代码如下:

int maxDepth = INT_MIN;   // 全局变量 记录最大深度
int result;       // 全局变量 最大深度最左节点的数值
void traversal(TreeNode* root, int depth)

? ? ? 2.确定终止条件

当遇到叶子节点的时候,就需要统计一下最大的深度了,所以需要遇到叶子节点来更新最大深度。

代码如下:

if (root->left == NULL && root->right == NULL) {
    if (depth > maxDepth) {
        maxDepth = depth;           // 更新最大深度
        result = root->val;   // 最大深度最左面的数值
    }
    return;
}

? ? ? 3.确定单层递归的逻辑

在找最大深度的时候,递归的过程中依然要使用回溯,代码如下:

                    // 中
if (root->left) {   // 左
    depth++; // 深度加一
    traversal(root->left, depth);
    depth--; // 回溯,深度减一
}
if (root->right) { // 右
    depth++; // 深度加一
    traversal(root->right, depth);
    depth--; // 回溯,深度减一
}
return;

代码实现??

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int maxDepth = INT_MIN;
    int result;
    void traversal(TreeNode* root,int depth){
        if(root -> left == NULL && root -> right == NULL){
           if(depth > maxDepth){
               maxDepth = depth;
               result = root -> val;
           }
           return;     
        }
        if(root -> left){
            depth++;
            traversal(root -> left,depth);
            depth--;
        }
        if(root -> right){
            depth++;
            traversal(root -> right,depth);
            depth--;
        }
        return;
    }
    int findBottomLeftValue(TreeNode* root) {
        int depth;
        traversal(root,depth);
        return result;
    }
};

LeetCode 112 路径之和?

?题目描述

给你二叉树的根节点?root?和一个表示目标和的整数?targetSum?。判断该树中是否存在?根节点到叶子节点?的路径,这条路径上所有节点值相加等于目标和?targetSum?。如果存在,返回?true?;否则,返回?false?。

叶子节点?是指没有子节点的节点。

示例 1:

输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。

示例 2:

输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。

示例 3:

输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。

?思路

1.确定递归函数的参数和返回类型

参数:需要二叉树的根节点,还需要一个计数器,这个计数器用来计算二叉树的一条边之和是否正好是目标和,计数器为int型。

再来看返回值,递归函数什么时候需要返回值?什么时候不需要返回值?这里总结如下三点:

  • 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值。(这种情况就是本文下半部分介绍的113.路径总和ii)
  • 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值。?
  • 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回。(本题的情况)

而本题我们要找一条符合条件的路径,所以递归函数需要返回值,及时返回,那么返回类型是什么呢?

如图所示:

112.路径总和

图中可以看出,遍历的路线,并不要遍历整棵树,所以递归函数需要返回值,可以用bool类型表示。

所以代码如下:

bool traversal(treenode* cur, int count)   // 注意函数的返回类型

2.确定终止条件

首先计数器如何统计这一条路径的和呢?

不要去累加然后判断是否等于目标和,那么代码比较麻烦,可以用递减,让计数器count初始为目标和,然后每次减去遍历路径节点上的数值。

如果最后count == 0,同时到了叶子节点的话,说明找到了目标和。

如果遍历到了叶子节点,count不为0,就是没找到。

递归终止条件代码如下:

if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
if (!cur->left && !cur->right) return false; // 遇到叶子节点而没有找到合适的边,直接返回

? ? ?3.确定单层递归的逻辑

因为终止条件是判断叶子节点,所以递归的过程中就不要让空节点进入递归了。

递归函数是有返回值的,如果递归函数返回true,说明找到了合适的路径,应该立刻返回。

代码如下:

if (cur->left) { // 左 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->left, count - cur->left->val)) return true; // 注意这里有回溯的逻辑
}
if (cur->right) { // 右 (空节点不遍历)
    // 遇到叶子节点返回true,则直接返回true
    if (traversal(cur->right, count - cur->right->val)) return true; // 注意这里有回溯的逻辑
}
return false;

?代码实现

class Solution {
private:
    bool traversal(TreeNode* cur, int count) {
        if (!cur->left && !cur->right && count == 0) return true; // 遇到叶子节点,并且计数为0
        if (!cur->left && !cur->right) return false; // 遇到叶子节点直接返回

        if (cur->left) { // 左
            count -= cur->left->val; // 递归,处理节点;
            if (traversal(cur->left, count)) return true;
            count += cur->left->val; // 回溯,撤销处理结果
        }
        if (cur->right) { // 右
            count -= cur->right->val; // 递归,处理节点;
            if (traversal(cur->right, count)) return true;
            count += cur->right->val; // 回溯,撤销处理结果
        }
        return false;
    }

public:
    bool hasPathSum(TreeNode* root, int sum) {
        if (root == NULL) return false;
        return traversal(root, sum - root->val);
    }
};

LeetCode 106?从中序与后序遍历序列构造二叉树

题目描述

给定两个整数数组?inorder?和?postorder?,其中?inorder?是二叉树的中序遍历,?postorder?是同一棵树的后序遍历,请你构造并返回这颗?二叉树?。

示例 1:

输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]

示例 2:

输入:inorder = [-1], postorder = [-1]
输出:[-1]

思路

中序:9 3 15 20 7? ?左中右

后续:9 15?7 20 3? 左右中

遍历二叉树的思路是,首先后续数组的最后一个元素一定是根节点,找到根节点之后切割中序数组,根节点前面的数组为左子树,后面的为右子树。根据中序数组左子树和右子树的元素个数,切割后序数组,例如左子树一共有3个数字,那么后续数组的前三个元素就是左子树,第四个到第size-1个就是右子树,然后再找后序数组左子树和右子树的最后一个元素,这个元素就是左子树或右子树的中间节点。依此类推,中间节点左右两边的数据再分为左子树和右子树,直到所有元素都遍历了为止。

106.从中序与后序遍历序列构造二叉树

代码思路如下:

  • 第一步:如果数组大小为零的话,说明是空节点了。

  • 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。

  • 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点

  • 第四步:切割中序数组,切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组)

  • 第五步:切割后序数组,切成后序左数组和后序右数组

  • 第六步:递归处理左区间和右区间

代码实现

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if(postorder.size() == 0) return NULL;
        int rootvalue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootvalue);
        if(postorder.size() == 1) return root;
        int index = 0;
        for(index = 0;index < inorder.size();index++){
            if(inorder[index] == rootvalue) break; 
        }
        vector<int> leftinorder;
        vector<int> rightinorder;
        vector<int> leftpostorder;
        vector<int> rightpostorder;
        for(int i = 0;i < index;i++){
            leftpostorder.push_back(postorder[i]);
        } 
        for(int i = index;i < postorder.size()-1;i++){
            rightpostorder.push_back(postorder[i]);
        }
        for(int i = 0;i < index;i++){
            leftinorder.push_back(inorder[i]);
        }
        for(int i = index+1;i < postorder.size();i++){
            rightinorder.push_back(inorder[i]);
        }
        root -> left = buildTree(leftinorder,leftpostorder);
        root -> right = buildTree(rightinorder,rightpostorder);
        return root;
    }
};

ps:这里已知前序,中序或者中序,后序都可以构造唯一的二叉树,但是前序和后序不可以,因为前序和后序的左子树,右子树都是相连的,不可以构造唯一的二叉树。

LeetCode? 654 最大二叉树

题目描述?

给定一个不重复的整数数组?nums?。?最大二叉树?可以用下面的算法从?nums?递归地构建:

  1. 创建一个根节点,其值为?nums?中的最大值。
  2. 递归地在最大值?左边?的?子数组前缀上?构建左子树。
  3. 递归地在最大值?右边?的?子数组后缀上?构建右子树。

返回?nums?构建的?最大二叉树?

示例 1:

输入:nums = [3,2,1,6,0,5]
输出:[6,3,5,null,2,0,null,null,1]
解释:递归调用如下所示:
- [3,2,1,6,0,5] 中的最大值是 6 ,左边部分是 [3,2,1] ,右边部分是 [0,5] 。
    - [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
        - 空数组,无子节点。
        - [2,1] 中的最大值是 2 ,左边部分是 [] ,右边部分是 [1] 。
            - 空数组,无子节点。
            - 只有一个元素,所以子节点是一个值为 1 的节点。
    - [0,5] 中的最大值是 5 ,左边部分是 [0] ,右边部分是 [] 。
        - 只有一个元素,所以子节点是一个值为 0 的节点。
        - 空数组,无子节点。

示例 2:

输入:nums = [3,2,1]
输出:[3,null,2,null,1]

思路

本题的思路和上一题的思路基本一致,刚开始没有判断nums的size是否为0,会有如下报错。

刚开始的nums不为空,递归几轮之后可能数组就会为空,所以还是要判断,size为1也要判断。

代码实现

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        if(nums.size() == 0) return NULL;
        int maxvalue = 0;
        int maxindex;
        for(int i = 0;i < nums.size();i++){
            if(nums[i] > maxvalue){
                maxvalue = nums[i];
                maxindex = i;
            }
        }
        TreeNode* root = new TreeNode(maxvalue);
        if(nums.size() == 1) return root;
        vector<int> lefttree;
        vector<int> righttree;
        for(int i = 0;i < maxindex;i++){
            lefttree.push_back(nums[i]);
        }
        for(int i = maxindex+1;i < nums.size();i++){
            righttree.push_back(nums[i]);
        }
        root -> left = constructMaximumBinaryTree(lefttree);
        root -> right = constructMaximumBinaryTree(righttree);
        return root;
    }
};
文章来源:https://blog.csdn.net/sdfg346777/article/details/135610626
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。