?承接上篇【Redis-02】Redis数据结构与对象原理 -上篇
?这两种编码内部封装的都是sds,站在使用者的角度而言,没什么区别;在底层内存分配及部分操作时,还是有一些不同的,主要体现在以下几点:
?embstr内存连续,如下图:
?raw内存不连续,如下图:
?redis中,set的类型是借助于intset和dict来实现的,与其他结构一样,在某些条件下,set的编码类型会发生变化。我们来看下,set在哪些情况下使用intset,哪些情况下使用dict。
?我们看下set在不同编码下的数据结构,下图分别是intset 和 dict的实现:
?在set较小的时候,使用intset可以节省内存,因为dict要维护两个哈希表,链表指针及其他大量元数据,而intset是一整块连续的内存。但是dict的平均查找效率是高于intset的,dict可以支持O(1)的时间复杂度,而intset是有序的整数集合,可以做二分查找,时间复杂度是O(log n)。
?这里需要说明一点的是,如果set使用dict作为底层实现,key是set的元素值,而 value = null。
?hash是我们在redis中存储对象比较理想的数据结构,每个对象的属性正好可以对应hash的每个field。hash的底层数据结构就是基于压缩列表和字典这两种类型实现的。
?当hash对象可以同时满足下面2个条件时,使用的是ziplist,否则就是dict。
? Redis中的sorted set,其实是在ziplist,skiplist和dict的基础上共同构建而来的,在不同的场景下,使用的数据结构是不一样的。决定使用哪种数据结构,涉及到redis.conf中的两个配置参数,分别是 zset-max-ziplist-entries 和 zset-max-ziplist-value。
?前面我们了解的ziplist是占用了一大块连续的内存,它的数据项都是相邻的。在数据项较少的时候,我们向有序集合中插入一条数据,ziplist上面就会插入两个entry节点,成员对象ele在前,分数score在后面,而且这些元素都是按照分值从小到大进行排序保存的。它的优势就是节省内存开销,支持从前往后或者从后往前的顺序查找。
?如果我们执行了这样一条命令,向学生有序集合中插入分数和姓名,他的类型就是ziplist:
?那么数据结构就是这样的
?在数据量比较多的时候,有序集合使用了 dict + zskiplist两种结构共同来实现。dict用于保存数据与分值之间的对应关系,key=成员对象,value=分值,这也是为什么数据值如果相同,后者会覆盖前者的原因。 而zskiplist用于使用分数来查找数据,也支持范围内的查找。虽然zset同时使用了字段和跳跃表,但是这两种数据结构都会通过指针来共享相同的元素和分值,所以不会产生重复的数据,也不会额外占用内存。
?如果我们执行了这样一条命令,向学生有序集合中插入分数和姓名,他的类型就是skiplist(zset):
?我现在分别写入128个元素和129个元素、长度为64和长度为65的元素,看一下他们的encoding的编码类型是什么。
?可以看到,上面两种情况的encoding编码值确实发生了变化。
?理论上,有序集合可以单独使用dict或者zskiplist来实现,但是为什么要使用两者结合呢,是因为无论单独使用哪一种,在性能上对比起同时使用两者时性能都会有所下降。下面我们看个例子:
?如果仅使用zskiplist,现在查找dd的排序:首先我们现在知道的是成员对象,而不是分值,所以就没有办法在O(log n)的时间复杂度下找到对应的节点,只能循环遍历,从头开始找,每循环一个对比一下 ele ?= dd,直到命中为止,时间复杂度就是O(n);
?而现在zset借助了dict,首先根据key=dd找到对应的value,这一步在哈希值冲突较小的前提下时间复杂度是O(1),而找到分值score后,借助于zskiplist的特性在O(log n)的时间复杂度下找到dd这个节点,然后再把沿途的跨度数值加起来,就是dd的排位。
?redis中列表list就是借助于quicklist来实现的,而且只有这一种编码类型。