个人主页:元清加油_【C++】,【C语言】,【数据结构与算法】-CSDN博客
个人专栏
力扣递归算法题
【C++】? ??
??????http://t.csdnimg.cn/6AbpV
数据结构与算法
前言:这个专栏主要讲述动态规划算法,所以下面题目主要也是这些算法做的 ?
我讲述题目会把讲解部分分为3个部分:
1、题目解析
2、算法原理思路讲解
3、代码实现
题目链接:不同路径
题目
一个机器人位于一个?m x n
?网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入:m = 3, n = 7 输出:28
示例 2:
输入:m = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3 输出:28
示例 4:
输入:m = 3, n = 3 输出:6
提示:
1 <= m, n <= 100
2 * 109
m x n
?网格的左上角 (起始点在下图中标记为 “Start” )。示例 2:
输入:m = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 3. 向下 -> 向右 -> 向下
我们这题使用动态规划,我们做这类题目可以分为以下五个步骤
????????dp[i][j] 表示:?到 [i, j] 位置处,?共有多少种方式。
class Solution
{
public:
int uniquePaths(int m, int n)
{
vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0)); // 创建?个 dp表
dp[0][1] = 1; // 初始化
// 填表
for (int i = 1; i <= m; i++) // 从上往下
{
for (int j = 1; j <= n; j++) // 从左往右
{
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
// 返回结果
return dp[m][n];
}
};