回归分析: 寻找两个或多个变量之间的函数关系(相关关系)
y = β 0 + β 1 x + ε \begin{aligned} y&=\beta_0+\beta_1x+\varepsilon\\ \end{aligned} y?=β0?+β1?x+ε?
β 1 = ∑ x i y i ? n x  ̄ y  ̄ ∑ x 2 ? n x  ̄ β 0 = y  ̄ ? β 1 x  ̄ \begin{aligned} \beta_1&=\frac{\sum x_iy_i-n\overline x\overline y}{\sum x^2-n\overline x}\\ \beta_0&=\overline y-\beta_1\overline x\\ \end{aligned} β1?β0??=∑x2?nx∑xi?yi??nxy??=y??β1?x?
S S T = ∑ ( y i ? y  ̄ ) 2 = ∑ [ ( y ^ i ? y  ̄ ) + ( y i ? y ^ i ) ] 2 = ∑ ( y ^ i ? y  ̄ ) 2 + ∑ ( y i ? y ^ i ) 2 + 2 ∑ ( y ^ i ? y  ̄ ) ( y i ? y ^ i ) = ∑ ( y ^ i ? y  ̄ ) 2 + ∑ ( y i ? y ^ i ) 2 + 0 = S S R + S S E \begin{aligned} SST&=\sum(y_i-\overline y)^2\\ &=\sum [(\hat y_i-\overline y)+(y_i-\hat y_i) ]^2\\ &=\sum(\hat y_i-\overline y)^2+\sum(y_i-\hat y_i)^2+2\sum(\hat y_i-\overline y)(y_i-\hat y_i)\\ &=\sum(\hat y_i-\overline y)^2+\sum(y_i-\hat y_i)^2+0\\ &=SSR+SSE \end{aligned} SST?=∑(yi??y?)2=∑[(y^?i??y?)+(yi??y^?i?)]2=∑(y^?i??y?)2+∑(yi??y^?i?)2+2∑(y^?i??y?)(yi??y^?i?)=∑(y^?i??y?)2+∑(yi??y^?i?)2+0=SSR+SSE?
r 2 = S S R S S T = ∑ ( y ^ i ? y  ̄ ) 2 ∑ ( y i ? y  ̄ ) 2 = 1 ? ∑ ( y i ? y ^ ) 2 ∑ ( y i ? y  ̄ ) 2 r^2=\frac{SSR}{SST}=\frac{\sum(\hat y_i-\overline y)^2}{\sum(y_i-\overline y)^2}=1-\frac{\sum(y_i-\hat y)^2}{\sum(y_i-\overline y)^2} r2=SSTSSR?=∑(yi??y?)2∑(y^?i??y?)2?=1?∑(yi??y?)2∑(yi??y^?)2?
F = S S R / 1 S S E / ( n ? 2 ) = ∑ ( y ^ i ? y  ̄ ) 2 ∑ ( y ^ i ? y i ) 2 / ( n ? 2 ) ~ F ( 1 , n ? 2 ) \begin{aligned} F&=\frac{SSR/1}{SSE/(n-2)}=\frac{\sum(\hat y_i-\overline y)^2}{\sum(\hat y_i-y_i)^2/(n-2)}\sim F(1, n-2)\\ \end{aligned} F?=SSE/(n?2)SSR/1?=∑(y^?i??yi?)2/(n?2)∑(y^?i??y?)2?~F(1,n?2)?
F = ( n ? 2 ) r 2 1 ? r 2 F=\frac{(n-2)r^2}{1-r^2}\\ F=1?r2(n?2)r2?
对于同一个 x x x重复测量得到 y y y的值
离差平方和: S S S
残差平方和: Q Q Q
回归平方和: U U U
误差平方和: Q E Q_E QE?
失拟平方和: Q L Q_L QL?
y = α e β x y = α x β y = x α x + β y = α + β log ? x y = 1 α + β e ? x \begin{aligned} y&=\alpha e^{\beta x}\\ y&=\alpha x^\beta\\ y&=\frac{x}{\alpha x+\beta}\\ y&=\alpha+\beta\log x\\ y&=\frac{1}{\alpha+\beta e^{-x}}\\ \end{aligned} yyyyy?=αeβx=αxβ=αx+βx?=α+βlogx=α+βe?x1??
y ^ = b 0 + b 1 x 1 + b 2 x 2 + . . . + b M x M 由 最小二乘法 : Q = ∑ t = 1 M ( y t ? y ^ t ) = ∑ t = 1 M ( y t ? b 0 ? b 1 x t 1 ? b 2 x t 2 ? . . . ? b M x t M ) 2 = 最小 { ? Q ? b 0 = ? 2 ∑ t = 1 M ( y t ? b 0 ? b 1 x t 1 ? b 2 x t 2 ? . . . ? b M x t M ) = 0 ? Q ? b i = ? 2 ∑ t = 1 M ( y t ? b 0 ? b 1 x t 1 ? b 2 x t 2 ? . . . ? b M x t M ) = 0 i = 1 , 2...... M \begin{aligned} \hat y &=b_0+b_1x_1+b_2x_2+...+b_Mx_M\\ 由&最小二乘法:\\ Q&=\sum_{t=1}^M(y_t-\hat y_t)=\sum_{t=1}^M(y_t-b_0-b_1x_{t1}-b_2x_{t2}-...-b_Mx_{tM})^2=最小\\ &\begin{cases} \frac{\partial Q}{\partial b_0}=-2\sum_{t=1}^M(y_t-b_0-b_1x_{t1}-b_2x_{t2}-...-b_Mx_{tM})=0\\ \frac{\partial Q}{\partial b_{i}}=-2\sum_{t=1}^M(y_t-b_0-b_1x_{t1}-b_2x_{t2}-...-b_Mx_{tM})=0\\ i=1,2......M \end{cases} \end{aligned} y^?由Q?=b0?+b1?x1?+b2?x2?+...+bM?xM?最小二乘法:=t=1∑M?(yt??y^?t?)=t=1∑M?(yt??b0??b1?xt1??b2?xt2??...?bM?xtM?)2=最小? ? ???b0??Q?=?2∑t=1M?(yt??b0??b1?xt1??b2?xt2??...?bM?xtM?)=0?bi??Q?=?2∑t=1M?(yt??b0??b1?xt1??b2?xt2??...?bM?xtM?)=0i=1,2......M??
矩阵形式:
(
X
T
X
)
b
=
X
T
Y
b
=
A
?
1
B
=
(
X
T
X
)
?
1
X
T
Y
\begin{aligned} (X^TX)b&=X^TY\\ b=A^{-1}&B=(X^TX)^{-1}X^TY\\ \end{aligned}
(XTX)bb=A?1?=XTYB=(XTX)?1XTY?
另一种方法
y
^
=
μ
0
+
b
1
(
x
1
?
x
 ̄
1
)
+
b
2
(
x
2
?
x
 ̄
2
)
+
.
.
.
+
b
M
(
x
M
?
x
 ̄
M
)
A
b
=
B
其
中
:
μ
=
b
1
x
 ̄
1
+
b
2
x
 ̄
2
+
.
.
.
+
b
M
x
 ̄
M
=
y
 ̄
\begin{aligned} \hat y&=\mu_0+b_1(x_1-\overline x_1)+b_2(x_2-\overline x_2)+...+b_M(x_M-\overline x_M)\\ \qquad &\qquad \qquad \qquad \qquad Ab=B\\ 其&中:\mu=b_1\overline x_1+b_2\overline x_2+...+b_M\overline x_M=\overline { y}\\ \end{aligned}
y^?其?=μ0?+b1?(x1??x1?)+b2?(x2??x2?)+...+bM?(xM??xM?)Ab=B中:μ=b1?x1?+b2?x2?+...+bM?xM?=y??
要求的系数 b b b比上一种方法少一个,矩阵维数由 M + 1 → M M+1\to M M+1→M
计算量减少