设
f
(
x
)
f(x)
f(x)在点
x
=
0
x=0
x=0处
n
n
n阶可导,则存在
x
=
0
x=0
x=0的一个邻域,对于该邻域内的任一点
x
x
x,有
f
(
x
)
=
f
(
0
)
+
f
′
(
0
)
x
+
f
′
′
(
0
)
2
!
x
2
+
?
+
f
(
n
)
(
0
)
n
!
x
n
+
o
(
x
n
)
f(x)=f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n+o(x^n)
f(x)=f(0)+f′(0)x+2!f′′(0)?x2+?+n!f(n)(0)?xn+o(xn)
sin ? x = x ? x 3 3 ! + o ( x 3 ) \sin x=x-\frac{x^3}{3!}+o(x^3) sinx=x?3!x3?+o(x3)
cos ? x = 1 ? x 2 2 ! + x 4 4 ! + o ( x 4 ) \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) cosx=1?2!x2?+4!x4?+o(x4)
arcsin ? x = x + x 3 3 ! + o ( x 3 ) \arcsin x=x+\frac{x^3}{3!}+o(x^3) arcsinx=x+3!x3?+o(x3)
tan ? x = x + x 3 3 + o ( x 3 ) \tan x=x+\frac{x^3}{3}+o(x^3) tanx=x+3x3?+o(x3)
arctan ? x = x ? x 3 3 + o ( x 3 ) \arctan x=x-\frac{x^3}{3}+o(x^3) arctanx=x?3x3?+o(x3)
ln ? ( 1 + x ) = x ? x 2 2 + x 3 3 + o ( x 3 ) \ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3) ln(1+x)=x?2x2?+3x3?+o(x3)
e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) ex=1+x+2!x2?+3!x3?+o(x3)
( 1 + x ) α = 1 + α x + α ( α ? 1 ) 2 ! x 2 + o ( x 2 ) (1+x)^\alpha=1+\alpha x+\frac{\alpha (\alpha-1)}{2!}x^2+o(x^2) (1+x)α=1+αx+2!α(α?1)?x2+o(x2)
1 1 ? x = 1 + x + x 2 + x 3 + o ( x 3 ) \frac{1}{1-x}=1+x+x^2+x^3+o(x^3) 1?x1?=1+x+x2+x3+o(x3)
1 1 + x = 1 ? x + x 2 ? x 3 + o ( x 3 ) \frac{1}{1+x}=1-x+x^2-x^3+o(x^3) 1+x1?=1?x+x2?x3+o(x3)
如 x ? sin ? x = 1 6 x 3 + o ( x 3 ) x-\sin x=\frac{1}{6}x^3+o(x^3) x?sinx=61?x3+o(x3),则 x ? sin ? x ~ 1 6 x 3 ( x → 0 ) x-\sin x\thicksim\frac{1}{6}x^3(x \rightarrow 0) x?sinx~61?x3(x→0)
同理有
arcsin
?
x
?
x
~
1
6
x
3
(
x
→
0
)
,
tan
?
x
?
x
~
1
3
x
3
(
x
→
0
)
,
x
?
arctan
?
x
~
x
3
3
(
x
→
0
)
\arcsin x-x \thicksim \frac{1}{6}x^3(x \rightarrow 0),\tan x-x \thicksim \frac{1}{3}x^3(x \rightarrow 0),x-\arctan x \thicksim \frac{x^3}{3}(x \rightarrow 0)
arcsinx?x~61?x3(x→0),tanx?x~31?x3(x→0),x?arctanx~3x3?(x→0)
将公式广义化,则得到下图所示