今天学习内容:回溯算法理论基础、77. 组合
讲解:代码随想录
(图片来源于代码随想录)题目分类:
回溯函数也就是递归函数,指的都是一个函数。回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案。回溯法的问题都可以抽象为树形结构,回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度。递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
回溯三部曲。
1.回溯函数模板返回值以及参数
函数起名字为backtracking,函数返回值一般为void。
void backtracking(参数)
2.回溯函数终止条件
什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。
if (终止条件) {
存放结果;
return;
}
3.回溯搜索的遍历过程?
回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。回溯函数遍历过程伪代码如下:?
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
整体代码模板如下:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
需要对着回溯算法理论基础给出的代码模板,来做本题组合问题。关于剪枝操作是理解的重点。
递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题。
本题抽象为下图。
每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。
图中可以发现n相当于树的宽度,k相当于树的深度。
1.递归函数的返回值以及参数
在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果
函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。
然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
需要startIndex来记录下一层递归,搜索的起始位置。
那么整体代码如下:
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex)
?2.回溯函数终止条件
path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。
此时用result二维数组,把path保存起来,并终止本层递归。
所以终止条件代码如下:
if (path.size() == k) {
result.push_back(path);
return;
}
单层搜索的过程
回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。
for循环每次从startIndex开始遍历,然后用path保存取到的节点i。
代码如下:
for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历
path.push_back(i); // 处理节点
backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.pop_back(); // 回溯,撤销处理的节点
}
可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。
backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。
完整代码如下:
class Solution {
private:
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n; i++) {
path.push_back(i); // 处理节点
backtracking(n, k, i + 1); // 递归
path.pop_back(); // 回溯,撤销处理的节点
}
}
public:
vector<vector<int>> combine(int n, int k) {
result.clear(); // 可以不写
path.clear(); // 可以不写
backtracking(n, k, 1);
return result;
}
};
可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
优化过程如下:
已经选择的元素个数:path.size();
还需要的元素个数为: k - path.size();
在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历
优化后整体代码如下:
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
path.push_back(i); // 处理节点
backtracking(n, k, i + 1);
path.pop_back(); // 回溯,撤销处理的节点
}
}
public:
vector<vector<int>> combine(int n, int k) {
backtracking(n, k, 1);
return result;
}
};
?
1.了解回溯算法路论基础、原理。回溯法解决k层for循环嵌套的问题。
2.回溯法的搜索过程抽象为树形结构,需要记住回溯算法的模板和具体过程。
3.掌握回溯算法剪枝操作。