int solve() {
cin >> n;
vector<int> e;
int l = 1, r = 1e9;
for (int i = 0; i < n; i ++) {
int op, x; cin >> op >> x;
if (op == 3) e.push_back(x);
else if (op == 1) l = max(l, x);
else r = min(r, x);
}
if (l > r) return 0;
sort(e.begin(), e.end());
int ll = lower_bound(e.begin(), e.end(), l) - e.begin();
int rr = upper_bound(e.begin(), e.end(), r) - e.begin() - 1;
return r - l + 1 - (rr - ll + 1);
}
cin >> n >> k >> x;
for (int i = 1; i <= n; i ++) cin >> a[i];
sort(a + 1, a + n + 1);
for (int i = 1; i <= n; i ++) pre[i] = pre[i - 1] + a[i];
int res = -2e9;
if (n == k) res = 0;
for (int r = max(1, n - k); r <= n; r ++) {
int l = max(1, r - x + 1);
int cost = pre[l - 1] - (pre[r] - pre[l - 1]);
res = max(res, cost);
}
return res;
对于两个数 x , y x, y x,y,对 m m m 取模,则 x = k 1 m + b x=k_1m+b x=k1?m+b, y = k 2 m + b y=k_2m+b y=k2?m+b,则对于 m m m 的任意因数 c c c, ∵ c ∣ m ∵c|m ∵c∣m, ∴ c ∣ k 1 m , c ∣ k 2 m ∴c|k_1m,c|k_2m ∴c∣k1?m,c∣k2?m,而 b ≡ b ( m o d m ) b\equiv b\pmod m b≡b(modm)。所以对于 m m m 的任意因数 c c c,只要 m m m 符合, c c c 也符合,而 g c d gcd gcd 为最大公因数,使得尽可能成立,因此只要让 k 0 , k 1 , . . . , k n k_0,k_1,...,k_n k0?,k1?,...,kn? 都代入,使得均起到限制最终 g c d gcd gcd 的作用,若 g c d = 1 gcd = 1 gcd=1 则没有 m ≥ 2 m\ge2 m≥2 成立
// 赛时 code
int n, m;
int a[N];
int cnt, primes[N];
bool vis[N];
void getPrimes() {
for (int i = 2; i <= 2e5; i ++) {
if (vis[i]) continue;
primes[cnt ++] = i;
for (int j = i; j <= 2e5; j += i) vis[j] = true;
}
}
bool check(int t, int mod) {
for (int i = 0; i < t; i ++)
for (int j = i + t; j < n; j += t)
if (a[j] % mod != a[i] % mod) return false;
return true;
}
int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int get(int t) {
int d = abs(a[0] - a[t]);
for (int i = 0; i < t; i ++)
for (int j = i + t; j < n; j += t)
d = gcd(d, abs(a[i] - a[j]));
return d;
}
int solve() {
cin >> n;
for (int i = 0; i < n; i ++) cin >> a[i];
int res = 1;
bool st[N] = {0};
for (int i = n; i >= 2; i --) {
if (n % i || st[n / i]) continue;
int d = get(n / i);
if (d == 1) continue;
for (int j = 0; j < cnt; j ++)
if (check(n / i, primes[j])) {
for (int k = n / i; k < n; k += n / i) {
if (n % k || st[k]) continue;
st[k] = true;
res ++;
}
break;
}
}
return res;
}
int main() {
getPrimes();
FastIO
Cases
cout << solve() << endl;
return 0;
}
inline int gcd(int a, int b) { return b ? gcd(b, a % b) : a; }
int getD(int t) {
int d = 0;
for (int i = 0; i < n - t; i ++)
d = gcd(d, abs(a[i] - a[i + t]));
return d;
}
int solve() {
cin >> n;
for (int i = 0; i < n; i ++) cin >> a[i];
int res = 1;
bool st[N] = {0};
for (int i = n; i >= 2; i --) {
if (n % i) continue;
if (getD(n / i) != 1) res ++;
}
return res;
}