在实际使用FreeRTOS 的时候我们时常需要根据自己需求来配置FreeRTOS,而且不同架构
的MCU在使用的时候配置也不同。FreeRTOS的系统配置文件为FreeRTOSConfig.h,在此配置文件中可以完成FreeRTOS的裁剪和配置,这是非常重要的一个文件,本章就来讲解这个文件,本章分为如下几部分:
1、FreeRTOSConfig.h文件2、“INCLUDE_”开始的宏
3、“config”开始的宏
刚开始我们在移植FreeRTOS的时候,就注意到移植完成后会出现一个报错
报错的原因就是“缺少FreeRTOSConfig.h文件”!可见该文件的重要性,所以我在这里和大家分享一下我对该文件认识。
通过查阅资料,我了解到FreeRTOSConfig.h文件是十分重要的。
FreeRTOS的配置基本是通过在FreeRTOSConfig.h 中使用“#define”这样的语句来定义宏定义实现的!!!!
在FreeRTOS的官方demo中,每个工程都有一个FreeRTOSConfig.h文件,我们在使用的时候可以参考这个文件,甚至直接复制粘贴使用。
“INCLUDE_”开头的宏有什么用呢?
答:使能和除能FreeRTOS中相应的 API 函数!即用来配置FreeRTOS中可选API函数的!
举个例子来说明一下吧:
比如当宏INCLUDE_vTaskPrioritySet 设置为0的时候表示不能使用函数VTaskPrioritySet(),当设置为1的时候就表示可以使用函数VTaskPrioritySet();
以上描述的功能就是条件编译。
从截图中可以看出,只有当满足条件?INCLUDE_vTaskPrioritySet == 1时,函数vTaskPrioritySet()才可以被编译。FreeRTOS中的裁剪和配置就是用这种条件编译的方法来实现的,不止FreeRTOS这么干,其实很多的协议栈、RTOS系统和GUI库等都是使用条件编译的方法来完成配置和裁剪的。条件编译的好处就是节省空间,不需要的功能就不用编译,这样就可以根据实际需求来减少系统占用的ROM和RAM大小,根据自己所使用的MCU来调整系统消耗,降低成本。
接下来一起看一些“INCLUDE_”开始的宏,分析一下他们的作用。
还有很多,这里就不再逐个列举了。
“config”开始的宏和“INCLUDE_”开始的宏一样,都是用来完成FreeRTOS的配置和裁剪的,接下来我们就看一下这些“config”开始的宏。
默认情况下FreeRTOS的堆内存是由编译器来分配的,将宏configAPPLICATION_ALLOCATED_HEAP定义为1的话堆内存可以由用户自行设置,堆内存在 heap_1.c、heap_2.c、heap_3.c、heap_4.c和 heap_5.c中有定义,具体在哪个文件取决于用户的选择哪种内存管理方式。比如选择heap_4.c,那么在heap_4.c中就有如图所示定义:
从图中可以看出,只有当宏configAPPLICATION_ALLOCATED_HEAP == 时,需要用户自行堆内存ucHeap,否则的话就是编译器来分配。
断言,类似C标准库中的 assert()函数,调试代码的时候可以检查传入的参数是否合理,FreeRTOS内核中的关键点都会调用configASSERT(x),当x为0的时候说明有错误发生,使用断言的话会导致开销加大,一般在调试阶段使用。configASSERT()需要在FreeRTOSConfig.h文件中定义。
注意,vAssertCalled()函数需要用户自行去定义,可以是显示到LCD上的函数,也可以是通过串口打印出来的函数,如下的定义:
当参数x错误的时候就通过串口打印出发生错误的文件名和错误所在的行号,调试代码的可以使用断言,当调试完成以后尽量去掉断言,防止增加开销!
设置堆栈溢出检测,每个任务都有一个任务堆栈,如果使用函数xTaskCreate()创建一个任
务的话那么这个任务的堆栈是自动从FreeRTOS 的堆(uCHeap)中分配的,堆栈的大小是由函数xTaskCreate()的参数usStackDepth来决定的。如果使用函数xTaskCreateStatic()创建任务的话任务堆栈是由用户设置的,参数pxStackBuffer为任务堆栈,一般是一个数组。
堆栈溢出是导致应用程序不稳定的主要因素,FreeRTOS 提供了两种可选的机制来帮助检测和调试堆栈溢出,不管使用哪种机制都要设置宏 configCHECK_FOR_STACK_OVERFLOW.如果使能了堆栈检测功能的话,即宏configCHECK_FOR_STACK_OVERFLOW不为0,那么用户必须提供一个钩子函数(回调函数),当内核检测到堆栈溢出以后就会调用这个钩子函数,此钩子函数原型如下:参数xTask是任务句柄,pcTaskName是任务名字,要注意的是堆栈溢出太严重的话可能会损毁这两个参数,如果发生这种情况的话可以直接查看变量 pxCurrentTCB来确定哪个任务发生了堆栈溢出。有些处理器可能在堆栈溢出的时候生成一个fault中断来提示这种错误,另外,堆栈溢出检测会增加上下文切换的开销,建议在调试的时候使用。
configCHECK_FOR_STACK_OVERFLOW == 1,使用堆栈一处检测方法1。上下文切换的时候需要保存现场,现场是保存在堆栈中的,这个时候任务堆栈使用率很可能达到最大值,方法一就是不断的检测任务堆栈指针是否指向有效空间,如果指向了无效空间的话就会调用钩子函数。方法一的优点就是快。但是缺点就是不能检测所有的堆栈溢出。
configCHECK_FOR_STACK_OVERFLOW == 2,使用堆栈溢出检测方法2.
使用方法二的话,在创建任务的时候会向任务堆栈填充一个已知的标志值,方法二还会一直检测堆栈后面的几个bytes(标记值)是否被改写,如果被改写的话就会调用堆栈溢出钩子函数,所以方法二也会使用方法一中的机制!
方法二比方法一相对要慢一些,但是对于用户而言还是比较快的。方法二可以检测到几乎所有的堆栈溢出,但是也会存在某些情况检测不到的堆栈溢出。比如溢出值和标记值同时的时候。
设置CPU的频率
定义为1的话在创建FreeRTOS的内核对象的时候所需要的RAM就会从FreeRTOS的堆中动态的获取内存,如果定义为0的话所需的 RAM就需要用户自行提供,默认情况下宏configSUPPORT_ DYNAMIC_ALLOCATION为1。
FreeRTOS.h中由一些列的#define宏定义
在V8.0.0之前的FreeRTOS中会使用到这些数据类型,这些宏保证了你的代码从V8.0.0之前的版本升级到最新版本的时候不需要做出修改,默认情况下宏configENABLE_BACKWARD_COMPATIBILITY为1。
设置为1开启时间统计功能,相应的API函数会被编译,为0时关闭时间统计功能。如果宏configGENERATE_RUN_TIME_STATS为1的话还需要定义下表中的宏。
此宏定义了与空闲任务(idle Task)处于同等优先级的其他用户任务的行为,当为0的时候空闲任务不会为其他处于优先级的任务让出CPU使用权。当为1的时候,空闲任务就会为处于同等优先级的用户让出CPU使用权,除非没有就绪的用户任务,这样花费在空闲任务上的时间就会很少,但是这种方法也带了副作用,如图
图中有三个任务:A、B、C,还有一个空闲任务I,用户任务和空闲任务处于一优先级,任务切换发生在T0 ~T7时刻。T0 ~ T7之间的时间为一个时间片,在T2时刻空闲任务I开始执行,I任务运行了一段时间后被A任务抢走了CPU使用权,A任务运行到T3时刻发生任务切换,B任务开始进行。可以看出其任务I和任务A一起使用了一个时间片,所以任务A运行的时间比其他任务少!
一般建议关闭这个功能,毕竟空闲任务用不了多少时间,并且现在的MCU性能都很强。
这三个宏和RTOS的中断配置有关。
设置可以分配给协程的最大优先级,也就是协程的优先级数。设置号以后协程的优先级可以从0到configMAX_CO_ROUTINE_PRIORITIES-1,其中О是最低的优先级,configMAX_CO_ROUTINE_PRIORITIES-1为最高的优先级。
设置任务的优先级数量,设置好以后任务就可以使用从0到configMAX_PRIORITIES-1的优先级,其中0是最低优先级,configMAX_PRIORITIES-1是最高优先级。
注意和UCOS的区别,UCOS中0是最高优先级!
设置任务名最大长度
设置空闲任务的最小任务堆栈大小,以字为单位,不是字节。比如在STM32上设置为100的话,那么真正的堆栈大小就是100*4 = 400 字节
设置每个任务的本地存储指针数组大小,任务控制块中有本地存储数组指针,用户应用程序可以在这些本地存储中存入一些数据。
设置可以注册的队列和信号量的最大数量,在使用内核调试器查看信号量和队列的时候需要设置此宏,而且要先将消息队列和信号量进行注册,只有注册了的队列和信号量才会再内核调试器中看到,如果不使用内核调试器的话此宏设置为0即可。
当此宏定义为1,在创建一些内核对象的时候需要用户指定RAM,当为0的时候就会自使用heap.c 中的动态内存管理函数来自动的申请RAM。
设置FreeRTOS的系统时钟节拍频率,单位为HZ,此频率就是滴答定时器的中断频率,需要使用此宏来配置滴答定时器的中断,前面在讲delay.c文件的时候已经说过了。为了兼容ST最新的HAL库,我们将此宏设置为1000,周期就是1ms。
此宏是配置FreeRTOS 软件定时器的,FreeRTOS的软件定时器API函数会通过命令队列向软件定时器任务发送消息,此宏用来设置这个软件定时器的命令队列长度。
设置软件定时器任务的任务优先级。
设置定时器服务任务的任务堆栈大小。
设置系统节拍计数器变量数据类型,系统节拍计数器变量类型为TickType_t,当configUSE_16_BIT_TICKS为1的时候 TickType_t就是16位的,当configUSE_16_BIT_TICKS为0的话TickType_t就是32位的。
设置堆栈大小,如果使用了动态内存管理的话,FreeRTOS在创建任务、信号量、队列等的时候就会使用heap_x.c(x 为1 ~ 15)中的内存申请内存。这些内存就是从堆ucHeap[configTOTAL_HEAP_SIZE]中申请的,堆的大小由 configTOTAL_HEAP_SIZE来定义。
此宏设置为1的话,函数configUSE_APPLICATION_TASK_TAGF()和xTaskCallApplicationTaskHook()就会被编译。
此宏为Ⅰ的时候启用协程,协程可以节省开销,但是功能有限,现在的MCU性能已经非常强大了,建议关闭协程。?
当宏configUSE_TIMERS和 configUSE_DAEMON_TASK_STARTUP_HOOK都为1的时需要定义函数vApplicationDaemonTaskStartupHook(),函数原型如下:
设置为1的时候启用计数型信号量,相关的API函数会被编译。
为1时使用空闲任务钩子函数,用户需要实现空闲任务钩子函数,函数的原型如下:
?为1时使用内存分配失败钩子函数,用户需要实现内存分配失败钩子函数,函数原型如下
为1时使用互斥信号量,相关的API函数会被编译。
FreeRTOS有两种方法来选择下一个要运行的任务,一个是通用的方法,另外一个是特殊的方法,也就是硬件方法,使用MCU自带的硬件指令来实现。
STM32有计算前导零的指令,所以我们可以使用特殊方法,即将宏configUSE_PORT_OPTIMISED_TASK_SELECTION定义为1。计算前导零的指令在UCOSII也用到了,也是用来查找下一个要运行的任务的。
为1时使用抢占式调度器,为0时使用协程。如果使用抢占式调度器的话内核会在每个时钟节拍中断中进行任务切换,当使用协程的话会在如下地方进行任务切换:
1、一个任务调用了函数taskYIELD()。
2、一个任务调用了可以使任务进入阻塞态的API函数3、应用程序明确定义了在中断中执行上下文切换。
为1时启用队列集功能。
为1时使用递归互斥信号量,相关的API函数会被编译
宏configUSE_TRACE_FACILITY 和configUSE_ST,ATS_ FORMATTING_FUNCTIONS都为1 的时候函数vTaskList()和 vTaskGetRunTimeStats()会被编译。
为1的时候使用任务通知功能,相关的API函数会被编译,开启了此功能的话每个任务会多消耗8个字节。
为1时使能时间片钩子函数,用户需要实现时间片钩子函数,函数的原型如下:
?
为1时使能低功耗tickless模式。
为1时使用软件定时器,相关的API函数会被编译当宏configUSE_TIMERS为1的话,那么宏configTIMER_TASK_PRIORITYconfigTIMER_QUEUE_LENGTH和configTIMER_ TASK_STACK_DEPTH必须定义。
默认情况下,FreeRTOS使用抢占式调度器,这意味着调度器永远都在执行已经就绪了的最高优先级任务,优先级相同的任务在时钟节拍中断中进行切换,当宏configUSE_TIME_SLICING为0的时候不会在时钟节拍中断中执行相同优先级任务的任务切换,默认情况下宏configUSE_TIME_SLICING为1。
为1启用可视化跟踪调试,会增加一些结构体成员和API函数。
以上就是我对FreeRTOS配置文件的介绍,还有一些其他的配置宏由于使用的比较少这里并没有列出来。希望我的分享对你学习FreeRTOS有所帮助!