给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1
示例 2:
输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 '0' 或 '1'
解题思路
思路(flood fill算法 dfs实现):
用dfs枚举整个地图,若当前位置是 1,则把这个位置赋值为 0,然后遍历上下左右四个方向,将所有为1的地方赋值为 0,当这块岛屿已经遍历完,则 答案加1 。
class Solution {
int[] dx = {-1, 0, 1, 0}, dy = {0, 1, 0, -1};
public int numIslands(char[][] g) {
int n = g.length;
int cnt = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < g[i].length; j++) {
if (g[i][j] == '1') {
dfs(g, i, j);
cnt++;
}
}
}
return cnt;
}
private void dfs(char[][] g, int i, int j) {
g[i][j] = '0';
for (int m = 0; m < 4; m++) {
int x = i + dx[m], y = j + dy[m];
if (x >= 0 && x < g.length && y >= 0 && y < g[x].length && g[x][y] == '1') {
dfs(g, x, y);
}
}
}
}
复杂性分析
时间复杂度:O(nm)
空间复杂度:O(nm)