YOLOv8 Ultralytics:使用Ultralytics框架进行定向边界框对象检测

发布时间:2024年01月11日

在这里插入图片描述
在这里插入图片描述

前言

相关介绍

  • YOLOv8是YOLO系列实时目标检测器的最新版本,在准确性和速度方面提供了尖端的性能。基于以前的YOLO版本的进步,YOLOv8引入了新的功能和优化,使其成为各种应用中各种目标检测任务的理想选择。
  • YOLOv8官方文档:https://docs.ultralytics.com/
  • 定向对象检测比对象检测更进一步,引入了额外的角度来更准确地定位图像中的对象。
  • 定向对象检测器的输出是一组旋转的边界框,精确包围图像中的对象,以及每个框的类标签和置信度分数。当您需要识别场景中感兴趣的对象,但不需要知道对象的确切位置或其确切形状时,对象检测是一个不错的选择。

前提条件

实验环境

matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.6.0
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0
tensorboard>=2.4.1
pandas>=1.1.4
seaborn>=0.11.0

安装环境

pip install ultralytics
# 或者
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快

在这里插入图片描述

在这里插入图片描述

项目地址

Linux

git clone https://github.com/ultralytics/ultralytics.git
Cloning into 'ultralytics'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.

Windows

请到https://github.com/ultralytics/ultralytics.git网站下载源代码zip压缩包。

使用Ultralytics框架进行定向边界框对象检测

在这里插入图片描述

yolo obb predict model=yolov8n-obb.pt source=images/plane.png

在这里插入图片描述

在这里插入图片描述

参考文献

[1] YOLOv8 源代码地址:https://github.com/ultralytics/ultralytics.git.
[2] YOLOv8 Docs:https://docs.ultralytics.com/
[3] https://docs.ultralytics.com/tasks/obb/

文章来源:https://blog.csdn.net/FriendshipTang/article/details/135536641
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。