基于鸢尾花数据集,完成关于支持向量机的分类模型训练、测试与评估。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# ==================特征探索====================
# ===认识数据===
iris = datasets.load_iris()
print("Feature names: {}".format(iris['feature_names']))
print("Target names: {}".format(iris["target_names"]))
print("target:\n{}".format(iris['target'])) # 0 代表setosa,1 代表versicolor,2 代表virginica。
print("shape of data: {}".format(iris['data'].shape))
# ===转为df对象===
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
feature_df=df.drop('label',axis=1,inplace=False) # 取出特征
print(df)
# ===相关性矩阵===
corr_matrix = feature_df.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
# ===径向可视化===
ax = pd.plotting.radviz(df, 'label', colormap='brg')
ax.add_artist(plt.Circle((0,0), 1, color='r', fill = False))
# ===各特征之间关系矩阵图===
# 设置颜色主题
g = sns.pairplot(data=df, palette="pastel", hue= 'label')
属性:花萼长度,花萼宽度,花瓣长度,花瓣宽度
分类:Setosa,Versicolour,Virginica
如下图,可以直观看到花瓣宽度(Petal Width)和花瓣长度(Petal Length)存在很高的正相关性,且它们与花萼长度(Speal Length)也具有很高的正相关性,而花萼宽度(Speal Width)与其他三个属性特征的相关性均很弱。
用于观察每种类别花的四个特征之间的相对关系(线性大小关系)。
如下图,其中0、1、2分别对应Setosa,Versicolour,Virginica类别,可以直观看出:Setosa花的花萼宽度(Speal Width)和花萼长度(Speal Length)这两个特征相比其他两个特征花瓣宽度(Petal Width)和花瓣长度(Petal Length)具有区分性,而Versicolour,Virginica花的四个特征分布很相似,不好区分。
从下图可以看出,Setosa花的花瓣宽度(Petal Width)和花瓣长度(Petal Length)的分布相比其他两类具有很好的区分性。
对于二维特征,如何区分图中不同的点
第一种思路:如下左图画一条线,但是是一个不太好的分割线
而换一种思路,如下右图,先找两个分类的决策边界(两边的虚线)之间的间隔区域,再取间隔区域的中间为分割线,这样能保证分割效果最佳。因此寻找最佳决策边界线(中间线)的问题可以转化为求解两类数据的最大间隔问题。
因此将决策边界上下移动c,得到间隔的两个边界线,如下左图,此时这两个边界线称为支持向量,它们决定了间隔距离。如下右图,经过数学变换,可以得到最终要求的超平面表达式,即求解参数w、b即可
除此之外,只考虑分类点的决策边界之间的距离的间隔,称为硬间隔,同时考虑距离和异常点损失(下图红线上方的黄点)的间隔,称为软间隔。
某点到超平面的距离r:(几何间隔,可以代表分类正确的确信度)
目标超平面之间的间隔距离γ:
约束条件:点到超平面距离r >= 超平面间隔距离γ的一半:
则最终求解的函数表达式为:
但是以上函数表达式为非凸函数,因此要:
- 先转为凸函数
- 用拉格朗日乘子法和KKT条件求解对偶问题
1.转为凸函数:
2.用拉格朗日乘子法和KKT条件求解对偶问题
这个过程就涉及到高阶的数学知识了,我这里也不是很懂,只大概了解:
为什么要用拉格朗日乘子法:将不等式约束转换为等式约束。
整合成如下拉格朗日表达式:
依据对偶性,求解问题为:
先求解:
根据KKT条件:对w、b求偏导可得:
代入L(w,b,a):
再求解:
3.利用SMO求解α、从而求解w、b
现在优化问题变成了如上的形式,但是它的规模正比于训练样本数m,当m很大时,会有很大开销,因此针对这个问题的特性,有更高效的优化算法,即序列最小优化(SMO)算法。
其大概思想是:先固定α以外的参数,然后对α求极值,在上述约束条件下,α可以由其他变量导出,这样,在参数初始化后,不断迭代,可以最终达到收敛。
通过SMO求得的w、b为:
则超平面的公式为:
最后根据超平面的符号,表达成分类决策函数即可:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
class SMO:
def __init__(self, X, y, C, kernel, tol, max_passes=10):
self.X = X # 样本特征 m*n m个样本 n个特征
self.y = y # 样本标签 m*1
self.C = C # 惩罚因子, 用于控制松弛变量的影响
self.kernel = kernel # 核函数
self.tol = tol # 容忍度
self.max_passes = max_passes # 最大迭代次数
self.m, self.n = X.shape
self.alpha = np.zeros(self.m)
self.b = 0
self.w = np.zeros(self.n)
# 计算核函数
def K(self, i, j):
if self.kernel == 'linear':
return np.dot(self.X[i].T, self.X[j])
elif self.kernel == 'rbf':
gamma = 0.5
return np.exp(-gamma * np.linalg.norm(self.X[i] - self.X[j]) ** 2)
else:
raise ValueError('Invalid kernel specified')
def predict(self, X_test):
pred = np.zeros_like(X_test[:, 0])
pred = np.dot(X_test, self.w) + self.b
return np.sign(pred)
def train(self):
"""
训练模型
:return:
"""
passes = 0
while passes < self.max_passes:
num_changed_alphas = 0
for i in range(self.m):
# 计算E_i, E_i = f(x_i) - y_i, f(x_i) = w^T * x_i + b
# 计算误差E_i
E_i = 0
for ii in range(self.m):
E_i += self.alpha[ii] * self.y[ii] * self.K(ii, i)
E_i += self.b - self.y[i]
# 检验样本x_i是否满足KKT条件
if (self.y[i] * E_i < -self.tol and self.alpha[i] < self.C) or (self.y[i] * E_i > self.tol and self.alpha[i] > 0):
# 随机选择样本x_j
j = np.random.choice(list(range(i)) + list(range(i + 1, self.m)), size=1)[0]
# 计算E_j, E_j = f(x_j) - y_j, f(x_j) = w^T * x_j + b
# E_j用于检验样本x_j是否满足KKT条件
E_j = 0
for jj in range(self.m):
E_j += self.alpha[jj] * self.y[jj] * self.K(jj, j)
E_j += self.b - self.y[j]
alpha_i_old = self.alpha[i].copy()
alpha_j_old = self.alpha[j].copy()
# L和H用于将alpha[j]调整到[0, C]之间
if self.y[i] != self.y[j]:
L = max(0, self.alpha[j] - self.alpha[i])
H = min(self.C, self.C + self.alpha[j] - self.alpha[i])
else:
L = max(0, self.alpha[i] + self.alpha[j] - self.C)
H = min(self.C, self.alpha[i] + self.alpha[j])
# 如果L == H,则不需要更新alpha[j]
if L == H:
continue
# eta: alpha[j]的最优修改量
eta = 2 * self.K(i, j) - self.K(i, i) - self.K(j, j)
# 如果eta >= 0, 则不需要更新alpha[j]
if eta >= 0:
continue
# 更新alpha[j]
self.alpha[j] -= (self.y[j] * (E_i - E_j)) / eta
# 根据取值范围修剪alpha[j]
self.alpha[j] = np.clip(self.alpha[j], L, H)
# 检查alpha[j]是否只有轻微改变,如果是则退出for循环
if abs(self.alpha[j] - alpha_j_old) < 1e-5:
continue
# 更新alpha[i]
self.alpha[i] += self.y[i] * self.y[j] * (alpha_j_old - self.alpha[j])
# 更新b1和b2
b1 = self.b - E_i - self.y[i] * (self.alpha[i] - alpha_i_old) * self.K(i, i) \
- self.y[j] * (self.alpha[j] - alpha_j_old) * self.K(i, j)
b2 = self.b - E_j - self.y[i] * (self.alpha[i] - alpha_i_old) * self.K(i, j) \
- self.y[j] * (self.alpha[j] - alpha_j_old) * self.K(j, j)
# 根据b1和b2更新b
if 0 < self.alpha[i] and self.alpha[i] < self.C:
self.b = b1
elif 0 < self.alpha[j] and self.alpha[j] < self.C:
self.b = b2
else:
self.b = (b1 + b2) / 2
num_changed_alphas += 1
if num_changed_alphas == 0:
passes += 1
else:
passes = 0
# 提取支持向量和对应的参数
idx = self.alpha > 0 # 支持向量的索引
# SVs = X[idx]
selected_idx = np.where(idx)[0]
SVs = self.X[selected_idx]
SV_labels = self.y[selected_idx]
SV_alphas = self.alpha[selected_idx]
# 计算权重向量和截距
self.w = np.sum(SV_alphas[:, None] * SV_labels[:, None] * SVs, axis=0)
self.b = np.mean(SV_labels - np.dot(SVs, self.w))
print("w", self.w)
print("b", self.b)
def score(self, X, y):
predict = self.predict(X)
print("predict", predict)
print("target", y)
return np.mean(predict == y)
# 加载鸢尾花数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
y[y != 0] = -1
y[y == 0] = 1 # 分成两类
# 为了方便可视化,只取前两个特征
X2 = X[:,:2]
# # 分别画出类别 0 和 1 的点
plt.scatter(X2[y == 1, 0], X2[y == 1, 1], color='red',label="class 1")
plt.scatter(X2[y == -1, 0], X2[y == -1, 1], color='blue',label="class -1")
plt.xlabel("Speal Width")
plt.ylabel("Speal Length")
plt.legend()
plt.show()
# 数据预处理,将特征进行标准化,并将数据划分为训练集和测试集
scaler = StandardScaler()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3706)
X_train_std = scaler.fit_transform(X_train)
# 创建SVM对象并训练模型
svm = SMO(X_train_std, y_train, C=0.6, kernel='rbf', tol=0.001)
svm.train()
# 预测测试集的结果并计算准确率
X_test_std = scaler.transform(X_test)
accuracy = svm.score(X_test_std, y_test)
print('正确率: {:.2%}'.format(accuracy))
from sklearn.metrics import confusion_matrix, roc_curve, auc
y_pred=svm.predict(X_test_std)
# 绘制混淆矩阵
def cal_ConfusialMatrix(y_true_labels, y_pred_labels):
cm = np.zeros((2, 2))
y_true_labels = [0 if x == -1 else x for x in y_true_labels]
y_pred_labels = [0 if x == -1 else x for x in y_pred_labels]
for i in range(len(y_true_labels)):
cm[ y_true_labels[i], y_pred_labels[i] ] += 1
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='g', cmap='Blues', xticklabels=['Predicted Negative', 'Predicted Positive'], yticklabels=['Actual Negative', 'Actual Positive'])
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.title('Confusion Matrix')
plt.show()
y_pred=[int(x) for x in y_pred]
y_test=[int(x) for x in y_test]
cal_ConfusialMatrix(y_test, y_pred)
由于鸢尾花为三分类,为了简化实验,这里先把setosa定义为1类(+1),versicolor、virginica组合定义为1类(-1)。
做出其对于sepal width和sepal length的分布图,可以看到,训练样本应该是线性可分的。
按照训练集:测试集=8:2的比例进行训练,之后进行测试集分类结果如下:
线性核:
高斯核:
实验结果:
当使用的核函数为线性核时,准确率能达到100%,而使用高斯核时,准确率降低到96.67%(其实从混淆矩阵可以看到,只分类错误1个),且运行时间相对长很多。
分析原因:
线性核适用于数据集具有线性可分性的情况,即类别之间可以通过一条直线进行划分。在这种情况下,线性核可以提供较好的分类性能,并且计算效率较高。
高斯核可以更好地处理非线性问题。高斯核可以将输入空间映射到一个更高维度的特征空间,从而使得数据在新的特征空间中更容易被线性分割。但是,高斯核也有其缺点:在使用高斯核时,需要调整的超参数较多,如 gamma 参数和正则化参数 C,不正确的参数选择可能导致过拟合或欠拟合的问题。此外,高斯核计算复杂度较高,需要计算每个样本与其他样本之间的相似度,因此在数据集上的训练和预测时间可能较长。
因此综合分析,本实验中鸢尾花的特征为线性,因此使用线性核效果更佳。同时高斯核对参数比较敏感,实验中对于高斯核的参数选择可能也不够恰当。