数据可视化---离群值展示

发布时间:2023年12月19日

内容导航

类别内容导航
机器学习机器学习算法应用场景与评价指标
机器学习算法—分类
机器学习算法—回归
机器学习算法—聚类
机器学习算法—异常检测
机器学习算法—时间序列
数据可视化数据可视化—折线图
数据可视化—箱线图
数据可视化—柱状图
数据可视化—饼图、环形图、雷达图
统计学检验箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据PySpark大数据处理详细教程
使用教程CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理面试题—机器学习算法
面试题—推荐系统

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

def Outlier_visualization_line(data,threshold):
    plt.style.use('ggplot')
    data = pd.Series(data)
    mean = data.mean()
    std  = data.std()

    #筛选出离群值
    left  = mean - threshold * std
    right = mean + threshold * std
    error = data[(data<left)|(data>right)]
    data_c = data[(data>=left)&(data<=right)]
    # #不同着色,正常绿色,离群值红色
    # sp = np.where(data.isin(data_c),'g','r') 
    # 可视化
    fig = plt.figure(figsize=(12,8))
    plt.plot(data.index,data.values,'bo--',alpha=0.4)
    plt.scatter(error.index,error.values,c='r',s=60)
    plt.title('Outlier Visualization',size=20)
    plt.text(len(data)*0.4,data.values.max()+data.values.max()*0.01,
             r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))
    # 添加水平辅助线plt.axhline,添加垂直辅助线plt.axvline(轴位置,线形,标签))
    plt.axhline(left,linestyle = '--',label="{} sigma low".format(threshold))
    plt.axhline(right,linestyle = '--',label="{} sigma up".format(threshold))
    plt.xlabel('Index',size=18)
    plt.ylabel('Value',size=18)
    plt.grid(True)
    plt.legend(loc='best')
    plt.show()
    fig.savefig('Outlier_visualization_line.png',dpi=600)

data = np.random.randn(100)*100
Outlier_visualization_line(data,threshold=1.5)

在这里插入图片描述

"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

def Outlier_visualization_scatter(data,threshold):
    plt.style.use('ggplot')
    data = pd.Series(data)
    mean = data.mean()
    std  = data.std()

    #筛选出离群值
    left  = mean - threshold * std
    right = mean + threshold * std
    error = data[(data<left)|(data>right)]
    data_c = data[(data>=left)&(data<=right)]
    #不同着色,正常绿色,离群值红色
    sp = np.where(data.isin(data_c),'g','r') 
    # 可视化
    fig = plt.figure(figsize=(12,8))
    plt.scatter(data.index,data.values,marker='o',c=sp)
    plt.title('Outlier Visualization',size=20)
    plt.text(len(data)*0.4,data.values.max(),
             r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))
    plt.xlabel('Index',size=18)
    plt.ylabel('Value',size=18)
    plt.grid(True)
    plt.show()
    fig.savefig('Outlier_visualization_scatter.png',dpi=600)

data = np.random.randn(10000)*100
Outlier_visualization_scatter(data,threshold=2.7)

在这里插入图片描述

友情提示如果你觉得这个博客对你有帮助,请点赞、评论和分享吧!如果你有任何问题或建议,也欢迎在评论区留言。如果你觉得内容不错,请三连支持哦!!!

文章来源:https://blog.csdn.net/weixin_41620184/article/details/135081839
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。