1、在yolov5/models下面新建一个SE.py文件,在里面放入下面的代码
代码如下:
import numpy as np
import torch
from torch import nn
from torch.nn import init
class SEAttention(nn.Module):
def __init__(self, channel=512,reduction=16):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
2、找到yolo.py文件,进行更改内容
在27行加一个from models SE import SEAttention
, 保存即可
3、找到自己想要更改的yaml文件,我选择的yolov5s.yaml文件(你可以根据自己需求进行选择),将刚刚写好的模块SEAttention加入到yolov5s.yaml里面,并更改一些内容。更改如下
4、在yolo.py里面加入两行代码(332-333)
保存即可!
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/9eb88534be044a3d8d0f3bd3b4262f07.png
运行一下,发现出来了SEAttention
到处完成,跑100epoch,不知道跑到什么时候!