二分查找算法模版

发布时间:2024年01月17日

二分模版一共有两个,分别适用于不同情况

算法思路:假设目标值在闭区间[l,r]中,每次将区间长度缩小一半,当l=r时,我们就找到了目标值

版本一

当我们将区间[l, r]划分成[l, mid]和[mid + 1, r]时,其更新操作是r = mid或者l = mid + 1;,计算mid时不需要加1。

C++ 代码模板:

int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;
        else l = mid + 1;
    }
    return l;
}

版本二

当我们将区间[l, r]划分成[l, mid - 1]和[mid, r]时,其更新操作是r = mid - 1或者l = mid;,此时为了防止死循环,计算mid时需要加1。


C++ 代码模板:

int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

789. 数的范围

给定一个按照升序排列的长度为 n 的整数数组,以及 q个查询对于每个查询,返回一个元素 k

的起始位置和终止位置(位置从 0开始计数)。如果数组中不存在该元素,则返回 -1 -1

输入格式

第一行包含整数 n 和 q,表示数组长度和询问个数。第二行包含 n 个整数(均在 1~10000范围内),表示完整数组。接下来 q 行,每行包含一个整数 k,表示一个询问元素。

输出格式

共 q行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回 -1 -1

数据范围

1≤n≤100000

1≤q≤10000
1≤k≤10000

输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1

文章来源:https://blog.csdn.net/zn2021220822/article/details/135660013
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。