电能质量扰动信号数据介绍与分类-Python实现-CSDN博客
Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类-CSDN博客
Python电能质量扰动信号分类(二)基于CNN模型的一维信号分类-CSDN博客
Python电能质量扰动信号分类(三)基于Transformer的一维信号分类模型-CSDN博客
本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,然后通过Pytorch实现CNN-BiLSTM模型对扰动信号的分类。
?
Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集):
电能质量扰动信号数据介绍与分类-Python实现_电磁信号分类python-CSDN博客
部分扰动信号类型波形图如下所示:
?
在参考IEEE Std1159-2019电能质量检测标准与相关文献的基础上构建了扰动信号的模型,生成包括正常信号在内的10中单一信号和多种复合扰动信号。参考之前的文章,进行扰动信号10分类的预处理:
第一步,按照公式模型生成单一信号
?
单一扰动信号可视化:
?
第二步,导入十分类数据
import pandas as pd
import numpy as np
# 样本时长0.2s 样本步长1024 每个信号生成500个样本 噪声0DB
window_step = 1024
samples = 500
noise = 0
split_rate = [0.7, 0.2, 0.1] # 训练集、验证集、测试集划分比例
# 读取已处理的 CSV 文件
dataframe_10c = pd.read_csv('PDQ_10c_Clasiffy_data.csv' )
dataframe_10c.shape
第一步,定义制作数据集函数
?
第二步,制作数据集与分类标签
from joblib import dump, load
# 生成数据
train_dataframe, val_dataframe, test_dataframe = make_data(dataframe_10c, split_rate)
# 制作标签
train_xdata, train_ylabel = make_data_labels(train_dataframe)
val_xdata, val_ylabel = make_data_labels(val_dataframe)
test_xdata, test_ylabel = make_data_labels(test_dataframe)
# 保存数据
dump(train_xdata, 'TrainX_1024_0DB_10c')
dump(val_xdata, 'ValX_1024_0DB_10c')
dump(test_xdata, 'TestX_1024_0DB_10c')
dump(train_ylabel, 'TrainY_1024_0DB_10c')
dump(val_ylabel, 'ValY_1024_0DB_10c')
dump(test_ylabel, 'TestY_1024_0DB_10c')
?
注意:输入数据维度为[64, 1, 1024], 先送入CNN网络进行1d的卷积池化,然后再把卷积池化的空间特征送入BiLSTM进行信号时域特征的提取,最终送入全连接层和softmax进行分类。
100个epoch,准确率将近98%,CNN-BiLSTM模型分类效果良好,分类准确率高,性能优越,适当调整模型参数,可以进一步提高分类准确率。
注意调整参数:
可以适当增加 CNN层数和隐藏层维度数,微调学习率;
增加BiLSTM层数和维度数,增加更多的 epoch (注意防止过拟合)
可以改变一维信号堆叠的形状(设置合适的长度和维度)