当前业界很多训练脚本是基于TensorFlow的Python API进行开发的,默认运行在CPU/GPU/TPU上,为了使这些脚本能够利用昇腾AI处理器的强大算力执行训练,需要对TensorFlow的训练脚本进行迁移。
首先,我们了解下模型迁移的全流程:
通过上图可以看出,模型迁移包括“脚本迁移 –> 模型训练 –> 精度调优 –> 性能调优 –> 模型固化”几个流程,其中:
下面我们针对“脚本迁移”和“模型训练”两个阶段进行详细的介绍。
将TensorFlow训练脚本迁移到昇腾平台有自动迁移和手工迁移两种方式。
下面以TensorFlow 1.15的训练脚本为例,讲述训练脚本的详细迁移操作,TensorFlow 2.6的迁移操作类似,详细的迁移点可参见“昇腾文档中心[1]”。
自动迁移的流程示意图如下所示:
详细步骤如下;
pip3 install pandas
pip3 install xlrd==1.2.0
pip3 install openpyxl
pip3 install tkintertable
pip3 install google_pasta
进入迁移工具所在目录,例如“tfplugin安装目录/tfplugin/latest/python/site-packages/npu_bridge/convert_tf2npu/”,执行类似如下命令可同时完成脚本扫描和自动迁移:
python3 main.py -i /root/models/official/resnet -r /root/models/official/
其中main.py是迁移工具入口脚本,-i指定待迁移原始脚本路径,-r指定迁移报告存储路径。
在/root/models/official/output_npu_*下查看迁移后的脚本,在root/models/official/report_npu_*下查看迁移报告。
迁移报告示例如下:
手工迁移训练脚本主要包括如下迁移点:
from npu_bridge.npu_init import *
例如,修改基于Horovod开发的分布式训练脚本,使能昇腾AI处理器的分布式训练。
# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)
# Add hook to broadcast variables from rank 0 to all other processes during
# initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]
修改后:
# NPU allreduce
# 将hvd.DistributedOptimizer修改为npu_distributed_optimizer_wrapper"
opt = npu_distributed_optimizer_wrapper(opt)
# Add hook to broadcast variables from rank 0 to all other processes during initialization.
hooks = [NPUBroadcastGlobalVariablesHook(0)]
关闭TensorFlow中的remapping、xla等功能,避免与NPU中相关功能冲突。例如:
config = tf.ConfigProto(allow_soft_placement=True)
# 显式关闭remapping功能
config.graph_options.rewrite_options.remapping = RewriterConfig.OFF
# 显示关闭memory_optimization功能
config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF
Ascend平台提供了功能调试、性能/精度调优等功能,用户可通过配置使能相关功能,例如enable_dump_debug配置,支持以下取值:
配置示例:
custom_op.parameter_map["enable_dump_debug"].b = True
迁移成功后的脚本可在昇腾AI处理器上执行单Device训练,也可以在多个Device上执行分布式训练。
1)配置训练进程启动依赖的环境变量。
# 配置昇腾软件栈的基础环境变量,包括CANN、TF Adapter依赖的内容。
source /home/HwHiAiUser/Ascend/nnae/set_env.sh
source /home/HwHiAiUser/Ascend/tfplugin/set_env.sh
# 添加当前脚本所在路径到PYTHONPATH,例如:
export PYTHONPATH="$PYTHONPATH:/root/models"
# 训练任务ID,用户自定义,不建议使用以0开始的纯数字
export JOB_ID=10066
# 指定昇腾AI处理器逻辑ID,单P训练也可不配置,默认为0,在0卡执行训练
export ASCEND_DEVICE_ID=0
2)执行训练脚本拉起训练进程。
python3 /home/xxx.py
分布式训练需要先配置参与训练的昇腾AI处理器的资源信息,然后再拉起训练进程。当前有两种配置资源信息的方式:通过配置文件(即ranktable文件)或者通过环境变量的方式。下面以配置文件的方式介绍分布式训练的操作。
1)准备配置文件。
配置文件(即ranktable文件)为json格式,示例如下:
{
"server_count":"1", //AI server数目
"server_list":
[
{
"device":[ // server中的device列表
{
"device_id":"0",
"device_ip":"192.168.1.8", // 处理器真实网卡IP
"rank_id":"0" // rank的标识,rankID从0开始
},
{
"device_id":"1",
"device_ip":"192.168.1.9",
"rank_id":"1"
}
],
"server_id":"10.0.0.10" //server标识,以点分十进制表示IP字符串
}
],
"status":"completed", // ranktable可用标识,completed为可用
"version":"1.0" // ranktable模板版本信息,当前必须为"1.0"
}
2)执行分布式训练。
依次设置环境变量配置集群参数,并拉起训练进程。
拉起训练进程0:
# 配置昇腾软件栈的基础环境变量,包括CANN、TF Adapter依赖的内容。
source /home/HwHiAiUser/Ascend/nnae/set_env.sh
source /home/HwHiAiUser/Ascend/tfplugin/set_env.sh
export PYTHONPATH=/home/test:$PYTHONPATH
export JOB_ID=10086
export ASCEND_DEVICE_ID=0
# 当前Device在集群中的唯一索引,与资源配置文件中的索引一致
export RANK_ID=0
# 参与分布式训练的Device数量
export RANK_SIZE=2
export RANK_TABLE_FILE=/home/test/rank_table_2p.json
python3 /home/xxx.py
拉起训练进程1:
# 配置昇腾软件栈的基础环境变量,包括CANN、TF Adapter依赖的内容。
source /home/HwHiAiUser/Ascend/nnae/set_env.sh
source /home/HwHiAiUser/Ascend/tfplugin/set_env.sh
export PYTHONPATH=/home/test:$PYTHONPATH
export JOB_ID=10086
export ASCEND_DEVICE_ID=1
# 当前Device在集群中的唯一索引,与资源配置文件中的索引一致
export RANK_ID=1
# 参与分布式训练的Device数量
export RANK_SIZE=2
export RANK_TABLE_FILE=/home/test/rank_table_2p.json
python3 /home/xxx.py
以上就是TensorFlow模型迁移训练的相关知识点