C++中的返回值优化(RVO)

发布时间:2024年01月08日

一、命名返回值优化(NRVO)

是Visual C++2005及之后版本支持的优化。

具体来说,就是一个函数的返回值如果是一个对象。那么,正常的返回语句的执行过程是,把这个对象从当前函数的局部作用域,或者叫当前函数的栈空间,拷贝到返回区,使得调用者可以访问。然后程序从当前函数中返回到上一层,即该函数的调用语句处,通过访问返回区的对象,来执行调用语句所在的一整个语句。

当这个函数中所有的返回语句全部是这一个对象的话,那么,命名返回值优化的作用就是,在这个对象建立的时候,直接在返回区建立。这样就使得函数返回时不需要调用拷贝构造函数了,减少了一个对象的创建与销毁过程。

代码如下:

#include <iostream>
using namespace std;
 
class A
{
public:
    A()
    {
        member = 1;
        cout << "default constructor" << endl;
    }
    A(const A &right)
    {
        member = right.member;
        cout << "copy constructor" << endl;
    }
    ~A()
    {
        cout << "destructor" << endl;
    }
    A& operator = (const A &right)
    {
        cout << "assigning operator" << endl;
        return *this;
    }
    int member;
};
 
A MyMethod(int n)
{
   A retVal;
   retVal.member = n;
   return retVal;
}
 
 
int main()
{
    A valA;
    valA = MyMethod(10);
    return 0;
}

在VS2010的命令行下,进行未优化的编译: cl /Od example.cpp(cl编译的优化选项附文末)。执行example.exe,得到输出结果如下图

再次编译,进行优化后的编译: cl /O2 example.cpp ,执行example.exe,得到输出结果如下图

注:NRVO在多层嵌套函数下依然有效。

实验代码:

#include <iostream>
using namespace std;
 
class A
{
public:
    A()
    {
        member = 1;
        cout << "default constructor" << endl;
    }
    A(const A &right)
    {
        member = right.member;
        cout << "copy constructor" << endl;
    }
    ~A()
    {
        cout << "destructor" << endl;
    }
    A& operator = (const A &right)
    {
        cout << "assigning operator" << endl;
        return *this;
    }
    int member;
};
 
A f()
{
	A tmp;
	return tmp;
}
A MyMethod(int n)
{
	A tmp = f();
	return tmp;
}
 
 
int main()
{
    A valA;
    valA = MyMethod(10);
    return 0;
}

cl /Od结果:

cl /O2结果:

?二、未命名返回值优化

还有一种未命名的返回值优化,是这样做的,在返回语句中直接创建一个临时对象并返回。

实际上,这并不太能算是一种优化,因为在/Od的cl编译下也会进行优化。所以,这里相当于一个高效的编程技巧。

如下代码:

#include <iostream>
using namespace std;
 
class MyClass
{
public:
    MyClass()
    {
        cout << "default constructor at " << this << endl;
    }
    MyClass(int a, int b)
    {
        cout << "normal constructor at " << this << endl;
    }
    MyClass(const MyClass &right)
    {
        cout << "copy constructor at " << this << endl;
    }
    ~MyClass()
    {
        cout << "destructor at " << this << endl;
    }
};
 
MyClass MyMethod1(int a, int b)
{
    MyClass tmp1(a, b);
    MyClass tmp2(b, a);
    if(a > b)
    {
        return tmp1;
    }
    else
    {
        return tmp2;
    }
}
MyClass MyMethod2(int a, int b)
{
    if(a > b)
    {
        return MyClass(a, b);
    }
    else
    {
        return MyClass(b, a);
    }
}
 
int main()
{
    MyClass m;
    cout << "m at " << &m << endl;
    m = MyMethod1(1, 2);
    m = MyMethod2(1, 2);
    return 0;
}

在MyMethod1中,经历了创建tmp1与tmp2,并根据条件返回某个tmp的过程,不具备前文所述NRVO的条件(所有返回语句都要返回一个相同对象),那么会有两个tmp对象被创建,其中一个会被拷贝到返回区,再返回到函数调用语句。

但如果在返回语句中直接构造MyClass临时对象,如MyMethod2中所示,这样就可以直接将临时对象构造在返回区中,节省了两个对象的创建与销毁的过程。

用不带优化的/Od编译后,执行后结果如下:


注:未命名的返回值优化在多层函数嵌套下依然有效。

实验代码与NRVO如出一辙:

#include <iostream>
using namespace std;
 
class A
{
public:
    A()
    {
        cout << "default constructor" << endl;
    }
    A(const A &right)
    {
        cout << "copy constructor" << endl;
    }
    ~A()
    {
        cout << "destructor" << endl;
    }
    A& operator = (const A &right)
    {
        cout << "assigning operator" << endl;
        return *this;
    }
};
 
A f()
{
	return A();
}
A MyMethod(int n)
{
	return f();
}
 
 
int main()
{
    A valA;
    valA = MyMethod(10);
    return 0;
}

cl /Od结果如下:

三、?隐式构造函数优化

当用赋值语句对一个对象进行赋值时,最一般的情况是先执行赋值号右侧的表达式,再将表达式的结果(一般是编译时产生的临时变量)赋值给对象。

然而,当用赋值语句对一个对象进行初始化时,则该表达式的结果就是该对象。即,不需要产生临时变量,而是直接将表达式的结果建立在该对象的位置上。

不是很好表述,代码如下:

#include <iostream>
using namespace std;
 
class A
{
public:
	A()
	{
		cout << "default constructor" << endl;
	}
	A(const A &)
	{
		cout << "copy constructor" << endl;
	}
	~A()
	{
		cout << "destructor" << endl;
	}
	A& operator = (const A &)
	{
		cout << "operator =" << endl;
		return *this;
	}
};
 
A func()
{
	return A();
}
 
int main()
{
	A a = func();// A a(func())效果相同
	return 0;
}

运行结果如图所示:

func函数中,return右边的A()直接是在函数返回区建立的。而这个返回区,在主函数中,就变成了a。所以只需要一个构造函数。

个人的理解是这样的:在栈空间中,调用函数时,会在压入实参之前,留下一个函数返回值的类型的大小那么大的空间,作为函数的返回区。而新建立的变量a,其地址恰恰就在返回区的这个地方,这两者是完全重合的。所以,在函数返回后,无需将函数返回值作为拷贝构造函数的参数去初始化a,而是——什么都不用做。因为a所在的区域,就是函数的返回区域。

然而,当多重函数这样返回的时候,结果还是一样的。这里让我有点费解。代码如下:

#include <iostream>
using namespace std;
 
class A
{
public:
	A()
	{
		cout << "default constructor" << endl;
	}
	A(const A &)
	{
		cout << "copy constructor" << endl;
	}
	~A()
	{
		cout << "destructor" << endl;
	}
private:
	A& operator = (const A &)
	{
		cout << "operator =" << endl;
		return *this;
	}
};
 
A func1()
{
	return A();
}
 
A func()
{
	return func1();
}
 
int main()
{
	A a(func());
	return 0;
}

运行的结果和上面的是一样的,还是只执行了一次默认构造函数。
问题是,如果函数返回值的返回区确实是在实参之前,与调用者的下一个局部变量的地址是重合的话,那么,a和func()返回区的地址是重合的,可以理解。可func1()的返回区不应该是在func的栈空间中吗?怎么又会和main中的a重合呢?

现在只能理解这么多了。可能只有了解了C++的函数调用约定之后才能明白吧!

附:Visual Studio(2010)的cl优化选项:

文章来源:https://blog.csdn.net/sinat_41942180/article/details/135467563
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。