遗传算法(Genetic Algorithm,简称GA)是一种模拟生物进化过程的启发式优化算法。它通过模拟自然选择、交叉和变异等基因操作,来搜索问题的最优解。
遗传算法的基本思想是通过模拟生物的遗传机制来搜索解空间。算法维护一个种群,其中每个个体都代表问题的一个可能解。通过不断进行选择、交叉和变异操作,优秀的个体逐渐被筛选出来,并且逐代进化,最终找到问题的最优解。
下面是一个使用遗传算法解决函数最大化问题的Python代码示例:
import numpy as np
class GeneticAlgorithm:
def __init__(self, population_size, num_generations, crossover_rate, mutation_rate):
self.population_size = population_size
self.num_generations = num_generations
self.crossover_rate = crossover_rate
self.mutation_rate = mutation_rate
def optimize(self, fitness_func, num_variables, variable_range):
population = self.initialize_population(num_variables, variable_range)
for generation in range(self.num_generations):
fitness_values = self.calculate_fitness_values(population, fitness_func)
best_individual = population[np.argmax(fitness_values)]
print("Generation:", generation, "Best Fitness:", fitness_func(best_individual))
new_population = [best_individual]
while len(new_population) < self.population_size:
parent1 = self.select_individual(population, fitness_values)
parent2 = self.select_individual(population, fitness_values)
child1, child2 = self.crossover(parent1, parent2)
child1 = self.mutate(child1, variable_range)
child2 = self.mutate(child2, variable_range)
new_population.extend([child1, child2])
population = new_population
best_individual = population[np.argmax(fitness_values)]
best_fitness = fitness_func(best_individual)
return best_individual, best_fitness
def initialize_population(self, num_variables, variable_range):
population = []
for _ in range(self.population_size):
individual = np.random.uniform(low=variable_range[0], high=variable_range[1], size=num_variables)
population.append(individual)
return population
def calculate_fitness_values(self, population, fitness_func):
fitness_values = []
for individual in population:
fitness_values.append(fitness_func(individual))
return np.array(fitness_values)
def select_individual(self, population, fitness_values):
probabilities = fitness_values / np.sum(fitness_values)
selected_index = np.random.choice(range(len(population)), p=probabilities)
return population[selected_index]
def crossover(self, parent1, parent2):
if np.random.rand() < self.crossover_rate:
crossover_point = np.random.randint(1, len(parent1))
child1 = np.concatenate((parent1[:crossover_point], parent2[crossover_point:]))
child2 = np.concatenate((parent2[:crossover_point], parent1[crossover_point:]))
else:
child1 = parent1
child2 = parent2
return child1, child2
def mutate(self, individual, variable_range):
for i in range(len(individual)):
if np.random.rand() < self.mutation_rate:
individual[i] = np.random.uniform(low=variable_range[0], high=variable_range[1])
return individual
# Example usage
def fitness_func(x):
return -np.sum(x**2)
ga = GeneticAlgorithm(population_size=50, num_generations=100, crossover_rate=0.8, mutation_rate=0.1)
best_individual, best_fitness = ga.optimize(fitness_func, num_variables=5, variable_range=(-5, 5))
print("Best Individual:", best_individual)
print("Best Fitness:", best_fitness)
示例中使用一个简单的函数?fitness_func
?来评估个体的适应度。遗传算法的参数包括种群大小(population_size)、迭代代数(num_generations)、交叉率(crossover_rate)和变异率(mutation_rate),可以根据具体问题进行调整。
程序输出如下:
Generation: 0 Best Fitness: -10.995211741266354
Generation: 1 Best Fitness: -10.995211741266354
Generation: 2 Best Fitness: -10.995211741266354
Generation: 3 Best Fitness: -10.995211741266354
Generation: 4 Best Fitness: -10.995211741266354
Generation: 5 Best Fitness: -10.995211741266354
Generation: 6 Best Fitness: -10.995211741266354
Generation: 7 Best Fitness: -10.995211741266354
Generation: 8 Best Fitness: -10.995211741266354
Generation: 9 Best Fitness: -10.995211741266354
Generation: 10 Best Fitness: -10.995211741266354
Generation: 11 Best Fitness: -10.995211741266354
Generation: 12 Best Fitness: -10.995211741266354
Generation: 13 Best Fitness: -10.995211741266354
Generation: 14 Best Fitness: -10.995211741266354
Generation: 15 Best Fitness: -10.995211741266354
Generation: 16 Best Fitness: -10.995211741266354
Generation: 17 Best Fitness: -10.995211741266354
Generation: 18 Best Fitness: -10.995211741266354
Generation: 19 Best Fitness: -10.995211741266354
Generation: 20 Best Fitness: -10.995211741266354
Generation: 21 Best Fitness: -10.995211741266354
Generation: 22 Best Fitness: -10.995211741266354
Generation: 23 Best Fitness: -10.995211741266354
Generation: 24 Best Fitness: -10.995211741266354
Generation: 25 Best Fitness: -10.995211741266354
Generation: 26 Best Fitness: -10.995211741266354
Generation: 27 Best Fitness: -10.995211741266354
Generation: 28 Best Fitness: -10.995211741266354
Generation: 29 Best Fitness: -10.995211741266354
Generation: 30 Best Fitness: -10.995211741266354
Generation: 31 Best Fitness: -10.995211741266354
Generation: 32 Best Fitness: -10.995211741266354
Generation: 33 Best Fitness: -10.995211741266354
Generation: 34 Best Fitness: -10.995211741266354
Generation: 35 Best Fitness: -10.995211741266354
Generation: 36 Best Fitness: -10.995211741266354
Generation: 37 Best Fitness: -10.995211741266354
Generation: 38 Best Fitness: -10.995211741266354
Generation: 39 Best Fitness: -10.995211741266354
Generation: 40 Best Fitness: -10.995211741266354
Generation: 41 Best Fitness: -10.995211741266354
Generation: 42 Best Fitness: -10.995211741266354
Generation: 43 Best Fitness: -10.995211741266354
Generation: 44 Best Fitness: -10.995211741266354
Generation: 45 Best Fitness: -10.995211741266354
Generation: 46 Best Fitness: -10.995211741266354
Generation: 47 Best Fitness: -10.995211741266354
Generation: 48 Best Fitness: -10.995211741266354
Generation: 49 Best Fitness: -10.995211741266354
Generation: 50 Best Fitness: -10.995211741266354
Generation: 51 Best Fitness: -10.995211741266354
Generation: 52 Best Fitness: -10.995211741266354
Generation: 53 Best Fitness: -10.995211741266354
Generation: 54 Best Fitness: -10.995211741266354
Generation: 55 Best Fitness: -10.995211741266354
Generation: 56 Best Fitness: -10.995211741266354
Generation: 57 Best Fitness: -10.995211741266354
Generation: 58 Best Fitness: -10.995211741266354
Generation: 59 Best Fitness: -10.995211741266354
Generation: 60 Best Fitness: -10.995211741266354
Generation: 61 Best Fitness: -10.995211741266354
Generation: 62 Best Fitness: -10.995211741266354
Generation: 63 Best Fitness: -10.995211741266354
Generation: 64 Best Fitness: -10.995211741266354
Generation: 65 Best Fitness: -10.995211741266354
Generation: 66 Best Fitness: -10.995211741266354
Generation: 67 Best Fitness: -10.995211741266354
Generation: 68 Best Fitness: -10.995211741266354
Generation: 69 Best Fitness: -10.995211741266354
Generation: 70 Best Fitness: -10.995211741266354
Generation: 71 Best Fitness: -10.995211741266354
Generation: 72 Best Fitness: -10.995211741266354
Generation: 73 Best Fitness: -10.995211741266354
Generation: 74 Best Fitness: -10.995211741266354
Generation: 75 Best Fitness: -10.995211741266354
Generation: 76 Best Fitness: -10.995211741266354
Generation: 77 Best Fitness: -10.995211741266354
Generation: 78 Best Fitness: -10.995211741266354
Generation: 79 Best Fitness: -10.995211741266354
Generation: 80 Best Fitness: -7.064365256135209
Generation: 81 Best Fitness: -7.064365256135209
Generation: 82 Best Fitness: -7.064365256135209
Generation: 83 Best Fitness: -7.064365256135209
Generation: 84 Best Fitness: -7.064365256135209
Generation: 85 Best Fitness: -7.064365256135209
Generation: 86 Best Fitness: -7.064365256135209
Generation: 87 Best Fitness: -7.064365256135209
Generation: 88 Best Fitness: -7.064365256135209
Generation: 89 Best Fitness: -7.064365256135209
Generation: 90 Best Fitness: -7.064365256135209
Generation: 91 Best Fitness: -7.064365256135209
Generation: 92 Best Fitness: -7.064365256135209
Generation: 93 Best Fitness: -7.064365256135209
Generation: 94 Best Fitness: -7.064365256135209
Generation: 95 Best Fitness: -7.064365256135209
Generation: 96 Best Fitness: -7.064365256135209
Generation: 97 Best Fitness: -7.064365256135209
Generation: 98 Best Fitness: -7.064365256135209
Generation: 99 Best Fitness: -7.064365256135209
Best Individual: [-0.03032724 1.23763913 -1.2927741 0.5056739 1.89861105]
Best Fitness: -7.064365256135209